These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 10092160)
1. Weight-bearing physical activity, calcium intake, systemic glucocorticoids, chronic inflammation, and body constitution as determinants of lumbar and femoral bone mineral in juvenile chronic arthritis. Kotaniemi A; Savolainen A; Kröger H; Kautiainen H; Isomäki H Scand J Rheumatol; 1999; 28(1):19-26. PubMed ID: 10092160 [TBL] [Abstract][Full Text] [Related]
2. Familial resemblance of bone mineralization, calcium intake, and physical activity in early-adolescent daughters, their mothers, and maternal grandmothers. Runyan SM; Stadler DD; Bainbridge CN; Miller SC; Moyer-Mileur LJ J Am Diet Assoc; 2003 Oct; 103(10):1320-5. PubMed ID: 14520251 [TBL] [Abstract][Full Text] [Related]
3. Development of bone mineral density at the lumbar spine and femoral neck in juvenile chronic arthritis--a prospective one year followup study. Kotaniemi A; Savolainen A; Kröger H; Kautiainen H; Isomäki H J Rheumatol; 1998 Dec; 25(12):2450-5. PubMed ID: 9858444 [TBL] [Abstract][Full Text] [Related]
4. Bone mineral density in children with juvenile chronic arthritis. Cetin A; Celiker R; Dinçer F; Ariyürek M Clin Rheumatol; 1998; 17(6):551-3. PubMed ID: 9890693 [TBL] [Abstract][Full Text] [Related]
5. Estimation of central osteopenia in children with chronic polyarthritis treated with glucocorticoids. Kotaniemi A; Savolainen A; Kautiainen H; Kröger H Pediatrics; 1993 Jun; 91(6):1127-30. PubMed ID: 8502514 [TBL] [Abstract][Full Text] [Related]
6. Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. Ruiz JC; Mandel C; Garabedian M J Bone Miner Res; 1995 May; 10(5):675-82. PubMed ID: 7639101 [TBL] [Abstract][Full Text] [Related]
7. Evaluation by dual X-ray absorptiometry (DXA) of bone mineral density in children with juvenile chronic arthritis. Pereira RM; Corrente JE; Chahade WH; Yoshinari NH Clin Exp Rheumatol; 1998; 16(4):495-501. PubMed ID: 9706436 [TBL] [Abstract][Full Text] [Related]
8. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. Fuchs RK; Bauer JJ; Snow CM J Bone Miner Res; 2001 Jan; 16(1):148-56. PubMed ID: 11149479 [TBL] [Abstract][Full Text] [Related]
9. Regular physical exercise and bone mineral density: a four-year controlled randomized trial in middle-aged men. The DNASCO study. Huuskonen J; Väisänen SB; Kröger H; Jurvelin JS; Alhava E; Rauramaa R Osteoporos Int; 2001; 12(5):349-55. PubMed ID: 11444081 [TBL] [Abstract][Full Text] [Related]
10. Factors playing a role in the development of decreased bone mineral density in juvenile chronic arthritis. Celiker R; Bal S; Bakkaloğlu A; Ozaydin E; Coskun T; Cetin A; Dinçer F Rheumatol Int; 2003 May; 23(3):127-9. PubMed ID: 12739043 [TBL] [Abstract][Full Text] [Related]
11. Determinants of bone mass in 10- to 26-year-old females: a twin study. Young D; Hopper JL; Nowson CA; Green RM; Sherwin AJ; Kaymakci B; Smid M; Guest CS; Larkins RG; Wark JD J Bone Miner Res; 1995 Apr; 10(4):558-67. PubMed ID: 7610926 [TBL] [Abstract][Full Text] [Related]
12. Postmenopausal bone mineral density: relationship to calcium intake, calcium absorption, residual estrogen, body composition, and physical activity. Hoover PA; Webber CE; Beaumont LF; Blake JM Can J Physiol Pharmacol; 1996 Aug; 74(8):911-7. PubMed ID: 8960380 [TBL] [Abstract][Full Text] [Related]
13. Strong familial association of bone mineral density between parents and offspring: KNHANES 2008-2011. Choi HS; Park JH; Kim SH; Shin S; Park MJ Osteoporos Int; 2017 Mar; 28(3):955-964. PubMed ID: 27747365 [TBL] [Abstract][Full Text] [Related]
14. Exercise, smoking, and calcium intake during adolescence and early adulthood as determinants of peak bone mass. Cardiovascular Risk in Young Finns Study Group. Välimäki MJ; Kärkkäinen M; Lamberg-Allardt C; Laitinen K; Alhava E; Heikkinen J; Impivaara O; Mäkelä P; Palmgren J; Seppänen R BMJ; 1994 Jul; 309(6949):230-5. PubMed ID: 8069139 [TBL] [Abstract][Full Text] [Related]
15. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. Kohrt WM; Ehsani AA; Birge SJ J Bone Miner Res; 1997 Aug; 12(8):1253-61. PubMed ID: 9258756 [TBL] [Abstract][Full Text] [Related]
17. Development of bone mass and bone density of the spine and femoral neck--a prospective study of 65 children and adolescents. Kröger H; Kotaniemi A; Kröger L; Alhava E Bone Miner; 1993 Dec; 23(3):171-82. PubMed ID: 8148662 [TBL] [Abstract][Full Text] [Related]
18. Lifetime physical activity and calcium intake related to bone density in young women. Wallace LS; Ballard JE J Womens Health Gend Based Med; 2002 May; 11(4):389-98. PubMed ID: 12150501 [TBL] [Abstract][Full Text] [Related]
19. Growth retardation and bone loss as determinants of axial osteopenia in juvenile chronic arthritis. Kotaniemi A Scand J Rheumatol; 1997; 26(1):14-8. PubMed ID: 9057796 [TBL] [Abstract][Full Text] [Related]
20. Measurement of bone mineral density by dual energy X-ray absorptiometry in juvenile idiopathic arthritis. Dey S; Jahan A; Yadav TP; Bhagwani DK; Sachdev N Indian J Pediatr; 2014 Feb; 81(2):126-32. PubMed ID: 23645223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]