These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 10092170)
1. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Wenck AR; Quinn M; Whetten RW; Pullman G; Sederoff R Plant Mol Biol; 1999 Feb; 39(3):407-16. PubMed ID: 10092170 [TBL] [Abstract][Full Text] [Related]
2. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Tang W Plant Cell Rep; 2003 Feb; 21(6):555-62. PubMed ID: 12789430 [TBL] [Abstract][Full Text] [Related]
3. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Tang W; Sederoff R; Whetten R Planta; 2001 Oct; 213(6):981-9. PubMed ID: 11722135 [TBL] [Abstract][Full Text] [Related]
4. An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. Le VQ; Belles-Isles J; Dusabenyagasani M; Tremblay FM J Exp Bot; 2001 Nov; 52(364):2089-95. PubMed ID: 11604447 [TBL] [Abstract][Full Text] [Related]
5. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Hansen G; Das A; Chilton MD Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7603-7. PubMed ID: 8052627 [TBL] [Abstract][Full Text] [Related]
6. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation. Ye X; Chen Y; Wan Y; Hong YJ; Ruebelt MC; Gilbertson LA Plant Cell Rep; 2016 Mar; 35(3):601-11. PubMed ID: 26650837 [TBL] [Abstract][Full Text] [Related]
7. Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Liu CN; Li XQ; Gelvin SB Plant Mol Biol; 1992 Dec; 20(6):1071-87. PubMed ID: 1463842 [TBL] [Abstract][Full Text] [Related]
8. Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.). Tang W Cell Res; 2001 Sep; 11(3):237-43. PubMed ID: 11642410 [TBL] [Abstract][Full Text] [Related]
9. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus. Kimura M; Cutler S; Isobe S PLoS One; 2015; 10(7):e0131626. PubMed ID: 26176780 [TBL] [Abstract][Full Text] [Related]
10. Growth and differentiation of transgenic callus regulated by phytohormones and antibiotics in transformation of loblolly pine. Tang W; Luo XY; Samuels V Yi Chuan Xue Bao; 2002 Feb; 29(2):166-74. PubMed ID: 11902001 [TBL] [Abstract][Full Text] [Related]
11. A promoter from the loblolly pine PtNIP1;1 gene directs expression in an early-embryogenesis and suspensor-specific fashion. Ciavatta VT; Egertsdotter U; Clapham D; von Arnold S; Cairney J Planta; 2002 Aug; 215(4):694-8. PubMed ID: 12172854 [TBL] [Abstract][Full Text] [Related]
12. Agrobacterium-mediated transformation of embryogenic tissues of hybrid firs (Abies spp.) and regeneration of transgenic emblings. Salaj T; Moravcíková J; Vooková B; Salaj J Biotechnol Lett; 2009 May; 31(5):647-52. PubMed ID: 19169892 [TBL] [Abstract][Full Text] [Related]
14. In vitro plant regeneration and genetic transformation of Dichanthium annulatum. Kumar J; Shukla SM; Bhat V; Gupta S; Gupta MG DNA Cell Biol; 2005 Nov; 24(11):670-9. PubMed ID: 16274291 [TBL] [Abstract][Full Text] [Related]
15. An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Pan SQ; Jin S; Boulton MI; Hawes M; Gordon MP; Nester EW Mol Microbiol; 1995 Jul; 17(2):259-69. PubMed ID: 7494475 [TBL] [Abstract][Full Text] [Related]
16. A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Chowdhury S; Basu A; Kundu S Protoplasma; 2014 Sep; 251(5):1175-90. PubMed ID: 24590594 [TBL] [Abstract][Full Text] [Related]
18. Agrobacterium-Mediated Transformation of Yeast and Fungi. Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864 [TBL] [Abstract][Full Text] [Related]
19. The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. van der Fits L; Deakin EA; Hoge JH; Memelink J Plant Mol Biol; 2000 Jul; 43(4):495-502. PubMed ID: 11052201 [TBL] [Abstract][Full Text] [Related]
20. Comparative in silico analysis of SSRs in coding regions of high confidence predicted genes in Norway spruce (Picea abies) and Loblolly pine (Pinus taeda). Ranade SS; Lin YC; Van de Peer Y; García-Gil MR BMC Genet; 2015 Dec; 16():149. PubMed ID: 26706685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]