BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 10092518)

  • 41. General stress transcription factor sigmaB of Bacillus subtilis is a stable protein.
    Redfield AR; Price CW
    J Bacteriol; 1996 Jun; 178(12):3668-70. PubMed ID: 8655572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contributions of ATP, GTP, and redox state to nutritional stress activation of the Bacillus subtilis sigmaB transcription factor.
    Zhang S; Haldenwang WG
    J Bacteriol; 2005 Nov; 187(22):7554-60. PubMed ID: 16267279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The yeast two-hybrid system detects interactions between Bacillus subtilis sigmaB regulators.
    Voelker U; Voelker A; Haldenwang WG
    J Bacteriol; 1996 Dec; 178(23):7020-3. PubMed ID: 8955331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress.
    Kang CM; Brody MS; Akbar S; Yang X; Price CW
    J Bacteriol; 1996 Jul; 178(13):3846-53. PubMed ID: 8682789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock.
    Benson AK; Haldenwang WG
    J Bacteriol; 1993 Apr; 175(7):1929-35. PubMed ID: 8458834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The reduction in small ribosomal subunit abundance in ethanol-stressed cells of Bacillus subtilis is mediated by a SigB-dependent antisense RNA.
    Mars RA; Mendonça K; Denham EL; van Dijl JM
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2553-9. PubMed ID: 26115952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones.
    Yamaguchi Y; Tomoyasu T; Takaya A; Morioka M; Yamamoto T
    BMC Microbiol; 2003 Aug; 3():16. PubMed ID: 12911840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis.
    Völker U; Maul B; Hecker M
    J Bacteriol; 1999 Jul; 181(13):3942-8. PubMed ID: 10383961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon.
    Voigt B; Schroeter R; Jürgen B; Albrecht D; Evers S; Bongaerts J; Maurer KH; Schweder T; Hecker M
    Proteomics; 2013 Jul; 13(14):2140-61. PubMed ID: 23592518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32).
    Kitagawa M; Wada C; Yoshioka S; Yura T
    J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060
    [TBL] [Abstract][Full Text] [Related]  

  • 51. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon.
    Antelmann H; Engelmann S; Schmid R; Hecker M
    J Bacteriol; 1996 Nov; 178(22):6571-8. PubMed ID: 8932314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis.
    Akbar S; Gaidenko TA; Kang CM; O'Reilly M; Devine KM; Price CW
    J Bacteriol; 2001 Feb; 183(4):1329-38. PubMed ID: 11157946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Red light activates the sigmaB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade.
    Avila-Pérez M; van der Steen JB; Kort R; Hellingwerf KJ
    J Bacteriol; 2010 Feb; 192(3):755-62. PubMed ID: 19948797
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A phylogenomic study of the general stress response sigma factor sigmaB of Bacillus subtilis and its regulatory proteins.
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):427-52. PubMed ID: 12125823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heat-shock and general stress response in Bacillus subtilis.
    Hecker M; Schumann W; Völker U
    Mol Microbiol; 1996 Feb; 19(3):417-28. PubMed ID: 8830234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.
    Bianchi AA; Baneyx F
    Mol Microbiol; 1999 Dec; 34(5):1029-38. PubMed ID: 10594827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic evidence that multiple proteases are involved in modulation of heat-induced activation of the sigma factor SigI in Bacillus subtilis.
    Liu TY; Chu SH; Hu YN; Wang JJ; Shaw GC
    FEMS Microbiol Lett; 2017 Apr; 364(7):. PubMed ID: 28333276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock.
    Tsui HC; Feng G; Winkler ME
    J Bacteriol; 1996 Oct; 178(19):5719-31. PubMed ID: 8824618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis.
    Vijay K; Brody MS; Fredlund E; Price CW
    Mol Microbiol; 2000 Jan; 35(1):180-8. PubMed ID: 10632888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus.
    da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL
    Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.