These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10093030)

  • 1. The role of the lamellar interface during torsional yielding of human cortical bone.
    Jepsen KJ; Davy DT; Krzypow DJ
    J Biomech; 1999 Mar; 32(3):303-10. PubMed ID: 10093030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear deformation and fracture of human cortical bone.
    Tang T; Ebacher V; Cripton P; Guy P; McKay H; Wang R
    Bone; 2015 Feb; 71():25-35. PubMed ID: 25305520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does microdamage accumulation affect the mechanical properties of bone?
    Burr DB; Turner CH; Naick P; Forwood MR; Ambrosius W; Hasan MS; Pidaparti R
    J Biomech; 1998 Apr; 31(4):337-45. PubMed ID: 9672087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging.
    Wasserman N; Brydges B; Searles S; Akkus O
    Bone; 2008 Nov; 43(5):856-61. PubMed ID: 18708177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of damage accumulation measures in human cortical bone.
    Jepsen KJ; Davy DT
    J Biomech; 1997 Sep; 30(9):891-4. PubMed ID: 9302611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early cement damage around a femoral stem is concentrated at the cement/bone interface.
    Race A; Miller MA; Ayers DC; Mann KA
    J Biomech; 2003 Apr; 36(4):489-96. PubMed ID: 12600339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis.
    Martin RB; Stover SM; Gibson VA; Gibeling JC; Griffin LV
    J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing microcrack orientation distribution functions in osteonal bone samples.
    Wolfram U; Schwiedrzik JJ; Mirzaali MJ; Bürki A; Varga P; Olivier C; Peyrin F; Zysset PK
    J Microsc; 2016 Dec; 264(3):268-281. PubMed ID: 27421084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related differences in post-yield damage in human cortical bone. Experiment and model.
    Courtney AC; Hayes WC; Gibson LJ
    J Biomech; 1996 Nov; 29(11):1463-71. PubMed ID: 8894927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of increased intracortical remodeling on microcrack behaviour in compact bone.
    Kennedy OD; Brennan O; Mauer P; Rackard SM; O'Brien FJ; Taylor D; Lee TC
    Bone; 2008 Nov; 43(5):889-93. PubMed ID: 18706535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth.
    Akkus O; Rimnac CM
    J Biomech; 2001 Jun; 34(6):757-64. PubMed ID: 11470113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoporosis and anterior femoral notching in periprosthetic supracondylar femoral fractures: a biomechanical analysis.
    Shawen SB; Belmont PJ; Klemme WR; Topoleski LD; Xenos JS; Orchowski JR
    J Bone Joint Surg Am; 2003 Jan; 85(1):115-21. PubMed ID: 12533581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanics of osteonal cortical bone fracture.
    Guo XE; Liang LC; Goldstein SA
    J Biomech Eng; 1998 Feb; 120(1):112-7. PubMed ID: 9675689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.