These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 1009426)
21. Temporal disparity in pineal and retinal ontogeny. Ostholm T; Ekström P; Bruun A; van Veen T Brain Res; 1988 Jul; 470(1):1-13. PubMed ID: 3165685 [TBL] [Abstract][Full Text] [Related]
22. Action of gamma-aminobutyric acid (GABA) in the isolated photosensory pineal organ. Meissl H; Ekström P Brain Res; 1991 Oct; 562(1):71-8. PubMed ID: 1799874 [TBL] [Abstract][Full Text] [Related]
23. Stimulatory effect of isoproterenol but not of dibutyryl cyclic AMP on N-acetyltransferase activity and melatonin content of Syrian hamster pineal gland in organ culture. Santana C; Guerrero JM; Reiter RJ; Puig-Domingo M; Gonzalez-Brito A Neuroendocrinology; 1988 Sep; 48(3):229-34. PubMed ID: 2847069 [TBL] [Abstract][Full Text] [Related]
24. Melatonin metabolism: neural regulation of pineal serotonin: acetyl coenzyme A N-acetyltransferase activity. Klein DC; Weller JL; Moore RY Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3107-10. PubMed ID: 4332009 [TBL] [Abstract][Full Text] [Related]
25. Pineal glands of immature rats: rise and fall in N-acetyltransferase activity in vitro. Brammer M; Binkley S J Neurobiol; 1981 Mar; 12(2):167-73. PubMed ID: 6111585 [TBL] [Abstract][Full Text] [Related]
26. N-acetyltransferase and hydroxyindole-O-methyltransferase activity in intraocular pineal transplants: diurnal thythm as evidence for functional sympathetic adrenergic innervation. Bäckström M; Olson L; Seiger A Acta Physiol Scand; 1976 Jan; 96(1):64-71. PubMed ID: 943138 [TBL] [Abstract][Full Text] [Related]
27. GABAergic innervation in cerebral blood vessels: an immunohistochemical demonstration of L-glutamic acid decarboxylase and GABA transaminase. Imai H; Okuno T; Wu JY; Lee TJ J Cereb Blood Flow Metab; 1991 Jan; 11(1):129-34. PubMed ID: 1983997 [TBL] [Abstract][Full Text] [Related]
28. Taurine: stimulation of pineal N-acetyltransferase activity and melatonin production via a beta-adrenergic mechanism. Wheler GH; Weller JL; Klein DC Brain Res; 1979 Apr; 166(1):65-74. PubMed ID: 217502 [TBL] [Abstract][Full Text] [Related]
29. Indolamine metabolism in the intact and denervated pineal, pineal stalk and habenula. Moore RY Neuroendocrinology; 1975; 19(4):323-30. PubMed ID: 1241605 [TBL] [Abstract][Full Text] [Related]
30. GABA-immunoreactive neurons in the photosensory pineal organ of the rainbow trout: two distinct neuronal populations. Ekström P; van Veen T; Bruun A; Ehinger B Cell Tissue Res; 1987 Oct; 250(1):87-92. PubMed ID: 3652169 [TBL] [Abstract][Full Text] [Related]
31. Photoperiodic control of rat pineal serotonin N-acetyl-transferase activity. Rudeen PK; Reiter RJ Int J Chronobiol; 1979; 6(4):211-8. PubMed ID: 555459 [TBL] [Abstract][Full Text] [Related]
32. Catecholamine receptors regulating serotonin N-acetyltransferase activity and melatonin content of chicken retina and pineal gland: D2-dopamine receptors in retina and alpha-2 adrenergic receptors in pineal gland. Zawilska J; Iuvone PM J Pharmacol Exp Ther; 1989 Jul; 250(1):86-92. PubMed ID: 2568481 [TBL] [Abstract][Full Text] [Related]
33. Morphine induced alterations of gamma-aminobutyric acid and taurine contents and L-glutamate decarboxylase activity in rat spinal cord and thalamus: possible correlates with analgesic action of morphine. Kuriyama K; Yoneda Y Brain Res; 1978 Jun; 148(1):163-79. PubMed ID: 566149 [TBL] [Abstract][Full Text] [Related]
34. Nervous connections between the brain and the pineal gland in the cat (Felis catus) and the monkey (Cercopithecus aethiops). Nielsen JT; Moller M Cell Tissue Res; 1975 Aug; 161(3):293-301. PubMed ID: 809138 [TBL] [Abstract][Full Text] [Related]
35. Beta adrenergic-blockers decrease adrenergically stimulated N-acetyltransferase activity in pineal glands in organ culture. Parfitt A; Weller JL; Klein DC Neuropharmacology; 1976 Jun; 15(6):353-8. PubMed ID: 6923 [No Abstract] [Full Text] [Related]
36. Adrenergic control of pineal N-acetyltransferase activity: developmental aspects. Yuwiler A; Klein DC; Buda M; Weller JL Am J Physiol; 1977 Sep; 233(3):E141-6. PubMed ID: 910899 [TBL] [Abstract][Full Text] [Related]
37. Electrophysiological investigations on the central innervation of the rat and guinea-pig pineal gland. Reuss S; Semm P; Vollrath L J Neural Transm; 1984; 60(1):31-43. PubMed ID: 6090583 [TBL] [Abstract][Full Text] [Related]
38. Mitogen-activated protein kinase phosphatase-1 (MKP-1): >100-fold nocturnal and norepinephrine-induced changes in the rat pineal gland. Price DM; Chik CL; Terriff D; Weller J; Humphries A; Carter DA; Klein DC; Ho AK FEBS Lett; 2004 Nov; 577(1-2):220-6. PubMed ID: 15527789 [TBL] [Abstract][Full Text] [Related]
40. GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons. Pérez-Polanco P; Garduño J; Cebada J; Zarco N; Segovia J; Lamas M; García U J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Sep; 197(9):923-38. PubMed ID: 21626307 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]