These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 10094341)
1. A physiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery. Muldoon LL; Pagel MA; Kroll RA; Roman-Goldstein S; Jones RS; Neuwelt EA AJNR Am J Neuroradiol; 1999 Feb; 20(2):217-22. PubMed ID: 10094341 [TBL] [Abstract][Full Text] [Related]
2. Delivery of virus-sized iron oxide particles to rodent CNS neurons. Neuwelt EA; Weissleder R; Nilaver G; Kroll RA; Roman-Goldstein S; Szumowski J; Pagel MA; Jones RS; Remsen LG; McCormick CI Neurosurgery; 1994 Apr; 34(4):777-84. PubMed ID: 8008188 [TBL] [Abstract][Full Text] [Related]
3. Cerebral iron oxide distribution: in vivo mapping with MR imaging. Zimmer C; Weissleder R; O'Connor D; LaPointe L; Brady TJ; Enochs WS Radiology; 1995 Aug; 196(2):521-7. PubMed ID: 7617871 [TBL] [Abstract][Full Text] [Related]
4. Investigation of blood-brain barrier permeability to magnetite-dextran nanoparticles (MD3) after osmotic disruption in rats. Rousseau V; Denizot B; Pouliquen D; Jallet P; Le Jeune JJ MAGMA; 1997 Sep; 5(3):213-22. PubMed ID: 9351025 [TBL] [Abstract][Full Text] [Related]
6. Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain. Muldoon LL; Nilaver G; Kroll RA; Pagel MA; Breakefield XO; Chiocca EA; Davidson BL; Weissleder R; Neuwelt EA Am J Pathol; 1995 Dec; 147(6):1840-51. PubMed ID: 7495307 [TBL] [Abstract][Full Text] [Related]
8. Positive contrast MR-lymphography using inversion recovery with ON-resonant water suppression (IRON). Korosoglou G; Tang L; Kedziorek D; Cosby K; Gilson WD; Vonken EJ; Schär M; Sosnovik D; Kraitchman DL; Weiss RG; Weissleder R; Stuber M J Magn Reson Imaging; 2008 May; 27(5):1175-80. PubMed ID: 18425827 [TBL] [Abstract][Full Text] [Related]
9. Distribution of iron oxide nanoparticles in rat lymph nodes studied using electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI). Bordat C; Sich M; Réty F; Bouet O; Cournot G; Cuénod CA; Clément O J Magn Reson Imaging; 2000 Sep; 12(3):505-9. PubMed ID: 10992320 [TBL] [Abstract][Full Text] [Related]
10. Trafficking of superparamagnetic iron oxide particles (Combidex) from brain to lymph nodes in the rat. Muldoon LL; Varallyay P; Kraemer DF; Kiwic G; Pinkston K; Walker-Rosenfeld SL; Neuwelt EA Neuropathol Appl Neurobiol; 2004 Feb; 30(1):70-9. PubMed ID: 14720178 [TBL] [Abstract][Full Text] [Related]
11. Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Song M; Moon WK; Kim Y; Lim D; Song IC; Yoon BW Korean J Radiol; 2007; 8(5):365-71. PubMed ID: 17923778 [TBL] [Abstract][Full Text] [Related]
12. Dextran-magnetite particles: contrast-enhanced MRI of blood-brain barrier disruption in a rat model. Bulte JW; De Jonge MW; Kamman RL; Go KG; Zuiderveen F; Blaauw B; Oosterbaan JA; The TH; de Leij L Magn Reson Med; 1992 Feb; 23(2):215-23. PubMed ID: 1372384 [TBL] [Abstract][Full Text] [Related]
13. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Metz S; Bonaterra G; Rudelius M; Settles M; Rummeny EJ; Daldrup-Link HE Eur Radiol; 2004 Oct; 14(10):1851-8. PubMed ID: 15249981 [TBL] [Abstract][Full Text] [Related]
14. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Corot C; Petry KG; Trivedi R; Saleh A; Jonkmanns C; Le Bas JF; Blezer E; Rausch M; Brochet B; Foster-Gareau P; Balériaux D; Gaillard S; Dousset V Invest Radiol; 2004 Oct; 39(10):619-25. PubMed ID: 15377941 [TBL] [Abstract][Full Text] [Related]
15. Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms. Rainov NG; Zimmer C; Chase M; Kramm CM; Chiocca EA; Weissleder R; Breakefield XO Hum Gene Ther; 1995 Dec; 6(12):1543-52. PubMed ID: 8664379 [TBL] [Abstract][Full Text] [Related]
16. Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. Oweida AJ; Dunn EA; Karlik SJ; Dekaban GA; Foster PJ J Magn Reson Imaging; 2007 Jul; 26(1):144-51. PubMed ID: 17659552 [TBL] [Abstract][Full Text] [Related]
17. MRI detection of macrophages labeled using micrometer-sized iron oxide particles. Williams JB; Ye Q; Hitchens TK; Kaufman CL; Ho C J Magn Reson Imaging; 2007 Jun; 25(6):1210-8. PubMed ID: 17520727 [TBL] [Abstract][Full Text] [Related]
18. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. Moore A; Weissleder R; Bogdanov A J Magn Reson Imaging; 1997; 7(6):1140-5. PubMed ID: 9400860 [TBL] [Abstract][Full Text] [Related]
19. Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Briley-Saebo KC; Mani V; Hyafil F; Cornily JC; Fayad ZA Magn Reson Med; 2008 Apr; 59(4):721-30. PubMed ID: 18383304 [TBL] [Abstract][Full Text] [Related]
20. Ultrasmall superparamagnetic particles of iron oxide (USPIO) MR imaging of infarcted myocardium in pigs. Kroft LJ; Doornbos J; van der Geest RJ; van der Laarse A; van der Meulen H; de Roos A Magn Reson Imaging; 1998 Sep; 16(7):755-63. PubMed ID: 9811141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]