BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10094697)

  • 1. Transcriptional activation of ydeA, which encodes a member of the major facilitator superfamily, interferes with arabinose accumulation and induction of the Escherichia coli arabinose PBAD promoter.
    Bost S; Silva F; Belin D
    J Bacteriol; 1999 Apr; 181(7):2185-91. PubMed ID: 10094697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli gene ydeA encodes a major facilitator pump which exports L-arabinose and isopropyl-beta-D-thiogalactopyranoside.
    Carolé S; Pichoff S; Bouch JP
    J Bacteriol; 1999 Aug; 181(16):5123-5. PubMed ID: 10438792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping, sequence, and apparent lack of function of araJ, a gene of the Escherichia coli arabinose regulon.
    Reeder T; Schleif R
    J Bacteriol; 1991 Dec; 173(24):7765-71. PubMed ID: 1744033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter.
    Khlebnikov A; Datsenko KA; Skaug T; Wanner BL; Keasling JD
    Microbiology (Reading); 2001 Dec; 147(Pt 12):3241-7. PubMed ID: 11739756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence elements in the Escherichia coli araFGH promoter.
    Hendrickson W; Flaherty C; Molz L
    J Bacteriol; 1992 Nov; 174(21):6862-71. PubMed ID: 1400237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.
    Guzman LM; Belin D; Carson MJ; Beckwith J
    J Bacteriol; 1995 Jul; 177(14):4121-30. PubMed ID: 7608087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture.
    Khlebnikov A; Risa O; Skaug T; Carrier TA; Keasling JD
    J Bacteriol; 2000 Dec; 182(24):7029-34. PubMed ID: 11092865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains.
    Széliová D; Krahulec J; Šafránek M; Lišková V; Turňa J
    J Biotechnol; 2016 Oct; 236():1-9. PubMed ID: 27498315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon.
    Haldimann A; Daniels LL; Wanner BL
    J Bacteriol; 1998 Mar; 180(5):1277-86. PubMed ID: 9495769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli.
    Koita K; Rao CV
    PLoS One; 2012; 7(8):e43700. PubMed ID: 22952739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo single-molecule kinetics of activation and subsequent activity of the arabinose promoter.
    Mäkelä J; Kandhavelu M; Oliveira SM; Chandraseelan JG; Lloyd-Price J; Peltonen J; Yli-Harja O; Ribeiro AS
    Nucleic Acids Res; 2013 Jul; 41(13):6544-52. PubMed ID: 23644285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo induction kinetics of the arabinose promoters in Escherichia coli.
    Johnson CM; Schleif RF
    J Bacteriol; 1995 Jun; 177(12):3438-42. PubMed ID: 7768852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single cell kinetics of phenotypic switching in the arabinose utilization system of E. coli.
    Fritz G; Megerle JA; Westermayer SA; Brick D; Heermann R; Jung K; Rädler JO; Gerland U
    PLoS One; 2014; 9(2):e89532. PubMed ID: 24586851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity.
    Morgan-Kiss RM; Wadler C; Cronan JE
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7373-7. PubMed ID: 12032290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene.
    Merkel TJ; Nelson DM; Brauer CL; Kadner RJ
    J Bacteriol; 1992 May; 174(9):2763-70. PubMed ID: 1569008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of SotA and SotB, two Erwinia chrysanthemi proteins which modify isopropyl-beta-D-thiogalactopyranoside and lactose induction of the Escherichia coli lac promoter.
    Condemine G
    J Bacteriol; 2000 Mar; 182(5):1340-5. PubMed ID: 10671456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli K12 arabinose-binding protein mutants with altered transport properties.
    Kehres DG; Hogg RW
    Protein Sci; 1992 Dec; 1(12):1652-60. PubMed ID: 1304895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the ferric citrate transport system of Escherichia coli: mutations in region 2.1 of the FecI extracytoplasmic-function sigma factor suppress mutations in the FecR transmembrane regulatory protein.
    Stiefel A; Mahren S; Ochs M; Schindler PT; Enz S; Braun V
    J Bacteriol; 2001 Jan; 183(1):162-70. PubMed ID: 11114913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.