BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 10094700)

  • 1. Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis.
    Blankenhorn D; Phillips J; Slonczewski JL
    J Bacteriol; 1999 Apr; 181(7):2209-16. PubMed ID: 10094700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12.
    Yohannes E; Barnhart DM; Slonczewski JL
    J Bacteriol; 2004 Jan; 186(1):192-9. PubMed ID: 14679238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the Escherichia coli yfiD gene responds to intracellular pH and reduces the accumulation of acidic metabolic end products.
    Wyborn NR; Messenger SL; Henderson RA; Sawers G; Roberts RE; Attwood MM; Green J
    Microbiology (Reading); 2002 Apr; 148(Pt 4):1015-1026. PubMed ID: 11932447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine stress at high pH in Escherichia coli K-12.
    Yohannes E; Thurber AE; Wilks JC; Tate DP; Slonczewski JL
    BMC Microbiol; 2005 Oct; 5():59. PubMed ID: 16223443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli.
    Stancik LM; Stancik DM; Schmidt B; Barnhart DM; Yoncheva YN; Slonczewski JL
    J Bacteriol; 2002 Aug; 184(15):4246-58. PubMed ID: 12107143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids.
    Moreau PL
    J Bacteriol; 2007 Mar; 189(6):2249-61. PubMed ID: 17209032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12.
    Ma Z; Gong S; Richard H; Tucker DL; Conway T; Foster JW
    Mol Microbiol; 2003 Sep; 49(5):1309-20. PubMed ID: 12940989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic L-ascorbate metabolism and associated oxidative stress in Escherichia coli.
    Campos E; Montella C; Garces F; Baldoma L; Aguilar J; Badia J
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3399-3408. PubMed ID: 17906139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of acid resistance in Escherichia coli.
    Castanie-Cornet MP; Penfound TA; Smith D; Elliott JF; Foster JW
    J Bacteriol; 1999 Jun; 181(11):3525-35. PubMed ID: 10348866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW).
    Ma Z; Richard H; Tucker DL; Conway T; Foster JW
    J Bacteriol; 2002 Dec; 184(24):7001-12. PubMed ID: 12446650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homologue to the Escherichia coli alkyl hydroperoxide reductase AhpC is induced by osmotic upshock in Staphylococcus aureus.
    Armstrong-Buisseret L; Cole MB; Stewart GS
    Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1655-61. PubMed ID: 7551034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A requirement of TolC and MDR efflux pumps for acid adaptation and GadAB induction in Escherichia coli.
    Deininger KN; Horikawa A; Kitko RD; Tatsumi R; Rosner JL; Wachi M; Slonczewski JL
    PLoS One; 2011 Apr; 6(4):e18960. PubMed ID: 21541325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans.
    Higuchi M; Yamamoto Y; Poole LB; Shimada M; Sato Y; Takahashi N; Kamio Y
    J Bacteriol; 1999 Oct; 181(19):5940-7. PubMed ID: 10498705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH.
    Small P; Blankenhorn D; Welty D; Zinser E; Slonczewski JL
    J Bacteriol; 1994 Mar; 176(6):1729-37. PubMed ID: 8132468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNase E-dependent degradation of tnaA mRNA encoding tryptophanase is prerequisite for the induction of acid resistance in Escherichia coli.
    Kanda T; Abiko G; Kanesaki Y; Yoshikawa H; Iwai N; Wachi M
    Sci Rep; 2020 Apr; 10(1):7128. PubMed ID: 32346014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins.
    Poole LB; Ellis HR
    Biochemistry; 1996 Jan; 35(1):56-64. PubMed ID: 8555198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate.
    Hesslinger C; Fairhurst SA; Sawers G
    Mol Microbiol; 1998 Jan; 27(2):477-92. PubMed ID: 9484901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteins of the inner membrane of Escherichia coli: changes in composition associated with anaerobic growth and fumarate reductase amber mutation.
    Spencer ME; Guest JR
    J Bacteriol; 1974 Mar; 117(3):954-9. PubMed ID: 4591961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate Anaerobe bacteroides fragilis.
    Rocha ER; Smith CJ
    J Bacteriol; 1999 Sep; 181(18):5701-10. PubMed ID: 10482511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli.
    Tseng CP; Albrecht J; Gunsalus RP
    J Bacteriol; 1996 Feb; 178(4):1094-8. PubMed ID: 8576043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.