These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 10096451)

  • 41. Salivary defense mechanisms in juvenile periodontitis.
    Saxén L; Tenovuo J; Vilja P
    Acta Odontol Scand; 1990 Dec; 48(6):399-407. PubMed ID: 1705074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci.
    Schüpbach P; Neeser JR; Golliard M; Rouvet M; Guggenheim B
    J Dent Res; 1996 Oct; 75(10):1779-88. PubMed ID: 8955673
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Salivary pellicles on titanium and their effect on metabolic activity in Streptococcus oralis.
    Dorkhan M; Svensäter G; Davies JR
    BMC Oral Health; 2013 Jul; 13():32. PubMed ID: 23866104
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adhesion of oral streptococci to all-ceramics dental restorative materials in vitro.
    Meier R; Hauser-Gerspach I; Lüthy H; Meyer J
    J Mater Sci Mater Med; 2008 Oct; 19(10):3249-53. PubMed ID: 18470704
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of the salivary glycoprotein EP-GP with the bacterium Streptococcus salivarius HB.
    Schenkels LC; Ligtenberg AJ; Veerman EC; Van Nieuw Amerongen A
    J Dent Res; 1993 Dec; 72(12):1559-65. PubMed ID: 8254122
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-contact removal of coadhering and non-coadhering bacterial pairs from pellicle surfaces by sonic brushing and de novo adhesion.
    Busscher HJ; Rustema-Abbing M; Bruinsma GM; de Jager M; Gottenbos B; van der Mei HC
    Eur J Oral Sci; 2003 Dec; 111(6):459-64. PubMed ID: 14632680
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Secretory IgA adsorption and oral streptococcal adhesion to human enamel and artificial solid substrata with various surface free energies.
    Pratt-Terpstra IH; Mulder J; Weerkamp AH; Feijen J; Busscher HJ
    J Biomater Sci Polym Ed; 1991; 2(4):239-53. PubMed ID: 1772830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of salivary alpha-amylase binding to Streptococcus sanguis.
    Scannapieco FA; Bergey EJ; Reddy MS; Levine MJ
    Infect Immun; 1989 Sep; 57(9):2853-63. PubMed ID: 2788139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adhesion of oral streptococci to experimental bracket pellicles from glandular saliva.
    Ahn SJ; Kho HS; Kim KK; Nahm DS
    Am J Orthod Dentofacial Orthop; 2003 Aug; 124(2):198-205. PubMed ID: 12923517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme.
    Soares RV; Lin T; Siqueira CC; Bruno LS; Li X; Oppenheim FG; Offner G; Troxler RF
    Arch Oral Biol; 2004 May; 49(5):337-43. PubMed ID: 15041480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unstimulated salivary flow, pH, proteins and oral health in patients with Juvenile Idiopathic Arthritis.
    Kobus A; Kierklo A; Zalewska A; Kuźmiuk A; Szajda SD; Ławicki S; Bagińska J
    BMC Oral Health; 2017 Jun; 17(1):94. PubMed ID: 28577525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The abundance of lysozyme, lactoferrin and cystatin S in the enamel pellicle of children - Potential biomarkers for caries?
    Hertel S; Hannig C; Sterzenbach T
    Arch Oral Biol; 2023 Feb; 146():105598. PubMed ID: 36525870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystalline anatase-rich titanium can reduce adherence of oral streptococci.
    Dorkhan M; Hall J; Uvdal P; Sandell A; Svensäter G; Davies JR
    Biofouling; 2014; 30(6):751-9. PubMed ID: 24881929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Salivary antibody response to streptococci in preterm and fullterm children: a prospective study.
    Borges MC; Sesso ML; Roberti LR; de Menezes Oliveira MA; Nogueira RD; Geraldo-Martins VR; Ferriani VP
    Arch Oral Biol; 2015 Jan; 60(1):116-25. PubMed ID: 25290442
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Viability of Streptococcus mutans and Streptococcus sobrinus in whole saliva with varying concentrations of indigenous antimicrobial agents.
    Lenander-Lumikari M; Tenovuo J; Emilson CG; Vilja P
    Caries Res; 1992; 26(5):371-8. PubMed ID: 1334804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antimicrobial factors of saliva in relation to dental caries and salivary levels of mutans streptococci.
    Tenovuo J; Jentsch H; Soukka T; Karhuvaara L
    J Biol Buccale; 1992 Jun; 20(2):85-90. PubMed ID: 1644785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in saliva of epileptic patients.
    Nieuw Amerongen AV; Strooker H; Oderkerk CH; Bank RA; Henskens YM; Schenkels LC; Ligtenberg AJ; Veerman EC
    J Oral Pathol Med; 1992 May; 21(5):203-8. PubMed ID: 1403835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The binding of human salivary alpha-amylase by oral strains of streptococcal bacteria.
    Douglas CW
    Arch Oral Biol; 1983; 28(7):567-73. PubMed ID: 6605739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HLA-DR4 and salivary immunoglobulin A reactions to oral streptococci.
    Wallengren ML; Ericson D; Hamberg K; Johnson U
    Oral Microbiol Immunol; 2001 Feb; 16(1):45-53. PubMed ID: 11169139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HLA, salivary IgA and mutans streptococci--is there a relation?
    Wallengren ML
    Swed Dent J Suppl; 2004; (166):1-67. PubMed ID: 15224545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.