These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Dissecting the energetics of hydrophobic hydration of polypeptides. Matysiak S; Debenedetti PG; Rossky PJ J Phys Chem B; 2011 Dec; 115(49):14859-65. PubMed ID: 22035038 [TBL] [Abstract][Full Text] [Related]
6. Influence of the environment in the conformation of alpha-helices studied by protein database search and molecular dynamics simulations. Olivella M; Deupi X; Govaerts C; Pardo L Biophys J; 2002 Jun; 82(6):3207-13. PubMed ID: 12023245 [TBL] [Abstract][Full Text] [Related]
7. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface. Cornut I; Desbat B; Turlet JM; Dufourcq J Biophys J; 1996 Jan; 70(1):305-12. PubMed ID: 8770206 [TBL] [Abstract][Full Text] [Related]
8. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Roccatano D; Colombo G; Fioroni M; Mark AE Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12179-84. PubMed ID: 12196631 [TBL] [Abstract][Full Text] [Related]
9. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. Ladokhin AS; White SH J Mol Biol; 1999 Jan; 285(4):1363-9. PubMed ID: 9917380 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast hydration dynamics in melittin folding and aggregation: helix formation and tetramer self-assembly. Qiu W; Zhang L; Kao YT; Lu W; Li T; Kim J; Sollenberger GM; Wang L; Zhong D J Phys Chem B; 2005 Sep; 109(35):16901-10. PubMed ID: 16853151 [TBL] [Abstract][Full Text] [Related]
11. Role of water on unfolding kinetics of helical peptides studied by molecular dynamics simulations. Doruker P; Bahar I Biophys J; 1997 Jun; 72(6):2445-56. PubMed ID: 9168021 [TBL] [Abstract][Full Text] [Related]
12. Simulation of coherent energy transfer in an alpha-helical peptide by Fermi resonance. Clarke DL; Collins MA Biophys J; 1992 Feb; 61(2):316-33. PubMed ID: 1547322 [TBL] [Abstract][Full Text] [Related]
13. Conformational changes of peptides at solid/liquid interfaces: a Monte Carlo study. Mungikar AA; Forciniti D Biomacromolecules; 2004; 5(6):2147-59. PubMed ID: 15530028 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobicity of protein surfaces: Separating geometry from chemistry. Giovambattista N; Lopez CF; Rossky PJ; Debenedetti PG Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2274-9. PubMed ID: 18268339 [TBL] [Abstract][Full Text] [Related]
15. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices. Efremov RG; Nolde DE; Vergoten G; Arseniev AS Biophys J; 1999 May; 76(5):2460-71. PubMed ID: 10233063 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics study of substance P peptides in a biphasic membrane mimic. Wymore T; Wong TC Biophys J; 1999 Mar; 76(3):1199-212. PubMed ID: 10049305 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulation of surfactin molecules at the water-hexane interface. Nicolas JP Biophys J; 2003 Sep; 85(3):1377-91. PubMed ID: 12944256 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. Chiu CC; Dieckmann GR; Nielsen SO J Phys Chem B; 2008 Dec; 112(51):16326-33. PubMed ID: 19049390 [TBL] [Abstract][Full Text] [Related]
19. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution. Ghosh T; Garde S; GarcĂa AE Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218 [TBL] [Abstract][Full Text] [Related]
20. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta. Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]