These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10096906)

  • 1. Evidence for the extended phospholipid conformation in membrane fusion and hemifusion.
    Holopainen JM; Lehtonen JY; Kinnunen PK
    Biophys J; 1999 Apr; 76(4):2111-20. PubMed ID: 10096906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids.
    Lehtonen JY; Holopainen JM; Kinnunen PK
    Biophys J; 1996 Apr; 70(4):1753-60. PubMed ID: 8785334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1997 Mar; 72(3):1247-57. PubMed ID: 9138570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): free volume alterations revealed by inter- and intramolecular excimer-forming phospholipid analogs.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1994 Jun; 66(6):1981-90. PubMed ID: 8075332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the main transition of dinervonoylphosphocholine liposomes by fluorescence spectroscopy.
    Metso AJ; Mattila JP; Kinnunen PK
    Biochim Biophys Acta; 2004 May; 1663(1-2):222-31. PubMed ID: 15157624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin.
    Zhao H; Mattila JP; Holopainen JM; Kinnunen PK
    Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement.
    Parry MJ; Hagen M; Mouritsen OG; Kinnunen PK; Alakoskela JM
    Langmuir; 2010 Apr; 26(7):4909-15. PubMed ID: 20180577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects.
    Pereira FB; Goñi FM; Muga A; Nieva JL
    Biophys J; 1997 Oct; 73(4):1977-86. PubMed ID: 9336193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ethanol on metarhodopsin II formation is potentiated by phospholipid polyunsaturation.
    Mitchell DC; Litman BJ
    Biochemistry; 1994 Nov; 33(43):12752-6. PubMed ID: 7947679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of cytochrome c from liposomes by histone H1. Comparison with basic peptides.
    Rytömaa M; Kinnunen PK
    Biochemistry; 1996 Apr; 35(14):4529-39. PubMed ID: 8605203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-triggered intermembrane exchange of phospholipids and hemifusion by myelin basic protein.
    Cajal Y; Boggs JM; Jain MK
    Biochemistry; 1997 Mar; 36(9):2566-76. PubMed ID: 9054563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directly observed membrane fusion between oppositely charged phospholipid bilayers.
    Pantazatos DP; MacDonald RC
    J Membr Biol; 1999 Jul; 170(1):27-38. PubMed ID: 10398758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of phospholipid asymmetry on fusion between large unilamellar vesicles.
    Eastman SJ; Hope MJ; Wong KF; Cullis PR
    Biochemistry; 1992 May; 31(17):4262-8. PubMed ID: 1567871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopped-flow fluorometric study of the interaction of melittin with phospholipid bilayers: importance of the physical state of the bilayer and the acyl chain length.
    Bradrick TD; Philippetis A; Georghiou S
    Biophys J; 1995 Nov; 69(5):1999-2010. PubMed ID: 8580343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingosine-mediated membrane association of DNA and its reversal by phosphatidic acid.
    Kinnunen PK; Rytömaa M; Kõiv A; Lehtonen J; Mustonen P; Aro A
    Chem Phys Lipids; 1993 Nov; 66(1-2):75-85. PubMed ID: 7509731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of adriamycin to liposomes as a probe for membrane lateral organization.
    Söderlund T; Jutila A; Kinnunen PK
    Biophys J; 1999 Feb; 76(2):896-907. PubMed ID: 9929491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of a redox reaction on lipid bilayer surfaces by membrane dipole potential.
    Alakoskela JI; Kinnunen PK
    Biophys J; 2001 Jan; 80(1):294-304. PubMed ID: 11159402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.