These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10096910)

  • 41. Kinetics of cardiac thin-filament activation probed by fluorescence polarization of rhodamine-labeled troponin C in skinned guinea pig trabeculae.
    Bell MG; Lankford EB; Gonye GE; Ellis-Davies GC; Martyn DA; Regnier M; Barsotti RJ
    Biophys J; 2006 Jan; 90(2):531-43. PubMed ID: 16258047
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of tension development by MgADP and Pi without Ca2+. Role in spontaneous tension oscillation of skeletal muscle.
    Shimizu H; Fujita T; Ishiwata S
    Biophys J; 1992 May; 61(5):1087-98. PubMed ID: 1600074
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of force inhibition by sodium vanadate on cross-bridge binding, force redevelopment, and Ca2+ activation in cardiac muscle.
    Martyn DA; Smith L; Kreutziger KL; Xu S; Yu LC; Regnier M
    Biophys J; 2007 Jun; 92(12):4379-90. PubMed ID: 17400698
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.
    Ranatunga KW
    Biophys J; 1994 May; 66(5):1531-41. PubMed ID: 8061202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of a non-divalent cation binding mutant of myosin regulatory light chain on tension generation in skinned skeletal muscle fibers.
    Diffee GM; Greaser ML; Reinach FC; Moss RL
    Biophys J; 1995 Apr; 68(4):1443-52. PubMed ID: 7787030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient contraction of muscle fibers on photorelease of ATP at intermediate concentrations of Ca2+.
    Horiuti K; Kagawa K; Yamada K
    Biophys J; 1994 Nov; 67(5):1925-32. PubMed ID: 7858129
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics.
    Hancock WO; Huntsman LL; Gordon AM
    J Muscle Res Cell Motil; 1997 Dec; 18(6):671-81. PubMed ID: 9429160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of striated muscle: nearest-neighbor regulatory-unit and cross-bridge influence on myofilament kinetics.
    Robinson JM; Wang Y; Kerrick WG; Kawai R; Cheung HC
    J Mol Biol; 2002 Oct; 322(5):1065-88. PubMed ID: 12367529
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rate constant of muscle force redevelopment reflects cooperative activation as well as cross-bridge kinetics.
    Campbell K
    Biophys J; 1997 Jan; 72(1):254-62. PubMed ID: 8994610
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of pimobendan and its metabolite on myofibrillar calcium responsiveness and ATPase activity in the presence of inorganic phosphate.
    van Meel JC; Entzeroth M; Redemann N; Haigh RM
    Arzneimittelforschung; 1995 Feb; 45(2):136-41. PubMed ID: 7710434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. pH modulation of the kinetics of a Ca2(+)-sensitive cross-bridge state transition in mammalian single skeletal muscle fibres.
    Metzger JM; Moss RL
    J Physiol; 1990 Sep; 428():751-64. PubMed ID: 2231432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tension recovery in permeabilized rat soleus muscle fibers after rapid shortening and restretch.
    Campbell KS
    Biophys J; 2006 Feb; 90(4):1288-94. PubMed ID: 16299074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes.
    Fitzsimons DP; Moss RL
    Circ Res; 1998 Sep; 83(6):602-7. PubMed ID: 9742055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. pH dependence of myosin binding-induced activation of the thin filament in cardiac myocytes and skeletal fibers.
    Metzger JM
    Am J Physiol; 1996 Mar; 270(3 Pt 2):H1008-14. PubMed ID: 8780197
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rate of tension development in cardiac muscle varies with level of activator calcium.
    Wolff MR; McDonald KS; Moss RL
    Circ Res; 1995 Jan; 76(1):154-60. PubMed ID: 8001274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium-activated force in a turkey model of spontaneous dilated cardiomyopathy: adaptive changes in thin myofilament Ca2+ regulation with resultant implications on contractile performance.
    Gwathmey JK; Hajjar RJ
    J Mol Cell Cardiol; 1992 Dec; 24(12):1459-70. PubMed ID: 1338113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle.
    Regnier M; Martin H; Barsotti RJ; Rivera AJ; Martyn DA; Clemmens E
    Biophys J; 2004 Sep; 87(3):1815-24. PubMed ID: 15345560
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle.
    Walker JW; Lu Z; Moss RL
    J Biol Chem; 1992 Feb; 267(4):2459-66. PubMed ID: 1733945
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thin filament regulation of force activation is not essential in single vascular smooth muscle cells.
    Brozovich FV; Yamakawa M
    Am J Physiol; 1995 Jan; 268(1 Pt 1):C237-42. PubMed ID: 7840153
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium regulation of thin filament movement in an in vitro motility assay.
    Homsher E; Kim B; Bobkova A; Tobacman LS
    Biophys J; 1996 Apr; 70(4):1881-92. PubMed ID: 8785348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.