These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 10096912)

  • 1. Time-resolved absorption and photothermal measurements with sensory rhodopsin I from Halobacterium salinarum.
    Losi A; Braslavsky SE; Gärtner W; Spudich JL
    Biophys J; 1999 Apr; 76(4):2183-91. PubMed ID: 10096912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspartate 75 mutation in sensory rhodopsin II from Natronobacterium pharaonis does not influence the production of the K-like intermediate, but strongly affects its relaxation pathway.
    Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE
    Biophys J; 2000 May; 78(5):2581-9. PubMed ID: 10777754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis.
    Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE
    Biophys J; 1999 Dec; 77(6):3277-86. PubMed ID: 10585949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I.
    Jung KH; Spudich EN; Dag P; Spudich JL
    Biochemistry; 1999 Oct; 38(40):13270-4. PubMed ID: 10529200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I.
    Szundi I; Swartz TE; Bogomolni RA
    Biophys J; 2001 Jan; 80(1):469-79. PubMed ID: 11159417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. His166 is critical for active-site proton transfer and phototaxis signaling by sensory rhodopsin I.
    Zhang XN; Spudich JL
    Biophys J; 1997 Sep; 73(3):1516-23. PubMed ID: 9284318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory rhodopsin I photocycle intermediate SRI380 contains 13-cis retinal bound via an unprotonated Schiff base.
    Haupts U; Eisfeld W; Stockburger M; Oesterhelt D
    FEBS Lett; 1994 Dec; 356(1):25-9. PubMed ID: 7988713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional expression of His-tagged sensory rhodopsin I in Escherichia coli.
    Schmies G; Chizhov I; Engelhard M
    FEBS Lett; 2000 Jan; 466(1):67-9. PubMed ID: 10648814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different modes of proton translocation by sensory rhodopsin I.
    Haupts U; Bamberg E; Oesterhelt D
    EMBO J; 1996 Apr; 15(8):1834-41. PubMed ID: 8617229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromophore reorientations in the early photolysis intermediates of bacteriorhodopsin.
    Esquerra RM; Che D; Shapiro DB; Lewis JW; Bogomolni RA; Fukushima J; Kliger DS
    Biophys J; 1996 Feb; 70(2):962-70. PubMed ID: 8789113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76.
    Furutani Y; Takahashi H; Sasaki J; Sudo Y; Spudich JL; Kandori H
    Biochemistry; 2008 Mar; 47(9):2875-83. PubMed ID: 18220358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton circulation during the photocycle of sensory rhodopsin II.
    Sasaki J; Spudich JL
    Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I.
    Jung KH; Spudich JL
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6557-61. PubMed ID: 8692855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption and photochemistry of sensory rhodopsin--I: pH effects.
    Olson KD; Deval P; Spudich JL
    Photochem Photobiol; 1992 Dec; 56(6):1181-7. PubMed ID: 1337216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transducer protein HtrII modulates the lifetimes of sensory rhodopsin II photointermediates.
    Sasaki J; Spudich JL
    Biophys J; 1998 Nov; 75(5):2435-40. PubMed ID: 9788938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromophore of sensory rhodopsin II from Halobacterium halobium.
    Scharf B; Hess B; Engelhard M
    Biochemistry; 1992 Dec; 31(49):12486-92. PubMed ID: 1463734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle.
    Olson KD; Spudich JL
    Biophys J; 1993 Dec; 65(6):2578-85. PubMed ID: 8312493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The photochemical reaction cycle and photoinduced proton transfer of sensory rhodopsin II (Phoborhodopsin) from Halobacterium salinarum.
    Tamogami J; Kikukawa T; Ikeda Y; Takemura A; Demura M; Kamo N
    Biophys J; 2010 Apr; 98(7):1353-63. PubMed ID: 20371336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New photointermediates in the two photon signaling pathway of sensory rhodopsin-I.
    Swartz TE; Szundi I; Spudich JL; Bogomolni RA
    Biochemistry; 2000 Dec; 39(49):15101-9. PubMed ID: 11106488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.