BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10096921)

  • 1. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy.
    Steyer JA; Almers W
    Biophys J; 1999 Apr; 76(4):2262-71. PubMed ID: 10096921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport, docking and exocytosis of single secretory granules in live chromaffin cells.
    Steyer JA; Horstmann H; Almers W
    Nature; 1997 Jul; 388(6641):474-8. PubMed ID: 9242406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells.
    Perrais D; Kleppe IC; Taraska JW; Almers W
    J Physiol; 2004 Oct; 560(Pt 2):413-28. PubMed ID: 15297569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation.
    Loerke D; Stühmer W; Oheim M
    J Neurosci Methods; 2002 Sep; 119(1):65-73. PubMed ID: 12234637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the electrostatic field strength at the site of exocytosis in adrenal chromaffin cells.
    Rosenheck K
    Biophys J; 1998 Sep; 75(3):1237-43. PubMed ID: 9726926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells.
    Pihel K; Travis ER; Borges R; Wightman RM
    Biophys J; 1996 Sep; 71(3):1633-40. PubMed ID: 8874038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C-dependent supply of secretory granules to the plasma membrane.
    Tsuboi T; Kikuta T; Warashina A; Terakawa S
    Biochem Biophys Res Commun; 2001 Mar; 282(2):621-8. PubMed ID: 11401506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking chromaffin granules on their way through the actin cortex.
    Oheim M; Stühmer W
    Eur Biophys J; 2000; 29(2):67-89. PubMed ID: 10877017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural morphology of adrenal chromaffin cells indicative of a process of piecemeal degranulation.
    Crivellato E; Nico B; Perissin L; Ribatti D
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Feb; 270(2):103-8. PubMed ID: 12524685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromaffin cells in the adrenal homolog of Aphanius fasciatus (teleost fish) express piecemeal degranulation in response to osmotic stress: a hint for a conservative evolutionary process.
    Crivellato E; Civinini A; Gallo VP
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Oct; 288(10):1077-86. PubMed ID: 16964607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annexin 2 "secretion" accompanying exocytosis of chromaffin cells: possible mechanisms of annexin release.
    Faure AV; Migné C; Devilliers G; Ayala-Sanmartin J
    Exp Cell Res; 2002 May; 276(1):79-89. PubMed ID: 11978010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis.
    Allersma MW; Bittner MA; Axelrod D; Holz RW
    Mol Biol Cell; 2006 May; 17(5):2424-38. PubMed ID: 16510523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release.
    Oheim M; Loerke D; Chow RH; Stühmer W
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):307-18. PubMed ID: 10212479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromaffin cells in the amphibian urodele Triturus carnifex show ultrastructural features indicative of a vesicle-mediated mode of cell degranulation.
    Crivellato E; De Falco M; Capaldo A; Laforgia V; Ribatti D; De Luca A
    Anat Rec (Hoboken); 2009 Jan; 292(1):73-8. PubMed ID: 18727112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM).
    Oheim M; Loerke D; Stühmer W; Chow RH
    Eur Biophys J; 1998; 27(2):83-98. PubMed ID: 9530824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restriction of secretory granule motion near the plasma membrane of chromaffin cells.
    Johns LM; Levitan ES; Shelden EA; Holz RW; Axelrod D
    J Cell Biol; 2001 Apr; 153(1):177-90. PubMed ID: 11285284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the Secretory Machinery Dynamics by Total Internal Reflection Fluorescence Microscopy in Bovine Adrenal Chromaffin Cells.
    Villanueva J; Gimenez-Molina Y; Gutiérrez LM
    Methods Mol Biol; 2019; 1860():379-389. PubMed ID: 30317519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of changes in membrane surface morphology associated with exocytosis using scanning ion conductance microscopy.
    Shin W; Gillis KD
    Biophys J; 2006 Sep; 91(6):L63-5. PubMed ID: 16844756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional tracking of single secretory granules in live PC12 cells.
    Li D; Xiong J; Qu A; Xu T
    Biophys J; 2004 Sep; 87(3):1991-2001. PubMed ID: 15345575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.