BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 10097095)

  • 1. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations.
    Deniz AA; Dahan M; Grunwell JR; Ha T; Faulhaber AE; Chemla DS; Weiss S; Schultz PG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3670-5. PubMed ID: 10097095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies.
    Norman DG; Grainger RJ; Uhrín D; Lilley DM
    Biochemistry; 2000 May; 39(21):6317-24. PubMed ID: 10828944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis.
    Barth A; Voith von Voithenberg L; Lamb DC
    J Phys Chem B; 2019 Aug; 123(32):6901-6916. PubMed ID: 31117611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2.
    Deniz AA; Laurence TA; Beligere GS; Dahan M; Martin AB; Chemla DS; Dawson PE; Schultz PG; Weiss S
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5179-84. PubMed ID: 10792044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances.
    Lee NK; Kapanidis AN; Koh HR; Korlann Y; Ho SO; Kim Y; Gassman N; Kim SK; Weiss S
    Biophys J; 2007 Jan; 92(1):303-12. PubMed ID: 17040983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer.
    Clegg RM; Murchie AI; Zechel A; Lilley DM
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2994-8. PubMed ID: 8464916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation.
    Lee NK; Kapanidis AN; Wang Y; Michalet X; Mukhopadhyay J; Ebright RH; Weiss S
    Biophys J; 2005 Apr; 88(4):2939-53. PubMed ID: 15653725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer.
    Ozaki H; McLaughlin LW
    Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits.
    Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA
    J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of nucleic acids by using fluorescence resonance energy transfer (FRET).
    Ota N; Hirano K; Warashina M; Andrus A; Mullah B; Hatanaka K; Taira K
    Nucleic Acids Symp Ser; 1997; (37):207-8. PubMed ID: 9586072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor.
    Ha T; Enderle T; Ogletree DF; Chemla DS; Selvin PR; Weiss S
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6264-8. PubMed ID: 8692803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational flexibility of three-way DNA junctions containing unpaired nucleotides.
    Yang M; Millar DP
    Biochemistry; 1996 Jun; 35(24):7959-67. PubMed ID: 8672499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis.
    Clegg RM; Murchie AI; Lilley DM
    Biophys J; 1994 Jan; 66(1):99-109. PubMed ID: 8130350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence.
    Schuler B; Lipman EA; Steinbach PJ; Kumke M; Eaton WA
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2754-9. PubMed ID: 15699337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers.
    Wahlroos R; Toivonen J; Tirri M; Hänninen P
    J Fluoresc; 2006 May; 16(3):379-86. PubMed ID: 16791502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution of end-to-end distance distributions of flexible molecules using quenching-induced variations of the Forster distance for fluorescence energy transfer.
    Gryczynski I; Wiczk W; Johnson ML; Cheung HC; Wang CK; Lakowicz JR
    Biophys J; 1988 Oct; 54(4):577-86. PubMed ID: 3224143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer.
    Eis PS; Millar DP
    Biochemistry; 1993 Dec; 32(50):13852-60. PubMed ID: 8268160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.