BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10097655)

  • 1. [Genome rearrangement and gene duplication in chordate evolution].
    Hori H
    Tanpakushitsu Kakusan Koso; 1999 Mar; 44(3):234-44. PubMed ID: 10097655
    [No Abstract]   [Full Text] [Related]  

  • 2. Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain.
    Holland LZ; Short S
    Brain Behav Evol; 2008; 72(2):91-105. PubMed ID: 18836256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of en bloc duplication in vertebrate genomes.
    Abi-Rached L; Gilles A; Shiina T; Pontarotti P; Inoko H
    Nat Genet; 2002 May; 31(1):100-5. PubMed ID: 11967531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel human and mouse annexin A10 are linked to the genome duplications during early chordate evolution.
    Morgan RO; Jenkins NA; Gilbert DJ; Copeland NG; Balsara BR; Testa JR; Fernandez MP
    Genomics; 1999 Aug; 60(1):40-9. PubMed ID: 10458909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IS1096-mediated DNA rearrangements play a key role in genome evolution of Mycobacterium smegmatis.
    Wang XM; Galamba A; Warner DF; Soetaert K; Merkel JS; Kalai M; Bifani P; Lefèvre P; Mizrahi V; Content J
    Tuberculosis (Edinb); 2008 Sep; 88(5):399-409. PubMed ID: 18439874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution.
    Cañestro C; Albalat R; Hjelmqvist L; Godoy L; Jörnvall H; Gonzàlez-Duarte R
    J Mol Evol; 2002 Jan; 54(1):81-9. PubMed ID: 11734901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene duplications and losses within the cyclooxygenase family of teleosts and other chordates.
    Havird JC; Miyamoto MM; Choe KP; Evans DH
    Mol Biol Evol; 2008 Nov; 25(11):2349-59. PubMed ID: 18718920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene duplications in early metazoan evolution.
    Lundin LG
    Semin Cell Dev Biol; 1999 Oct; 10(5):523-30. PubMed ID: 10597636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The amphioxus Hairy family: differential fate after duplication.
    Minguillón C; Jiménez-Delgado S; Panopoulou G; Garcia-Fernàndez J
    Development; 2003 Dec; 130(24):5903-14. PubMed ID: 14561632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity.
    Freeling M; Thomas BC
    Genome Res; 2006 Jul; 16(7):805-14. PubMed ID: 16818725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing genome complexity.
    Vinogradov AE
    Science; 2004 Apr; 304(5669):389-90; author reply 389-90. PubMed ID: 15087529
    [No Abstract]   [Full Text] [Related]  

  • 12. Extensive genomic duplication during early chordate evolution.
    McLysaght A; Hokamp K; Wolfe KH
    Nat Genet; 2002 Jun; 31(2):200-4. PubMed ID: 12032567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates.
    Kasahara M; Suzuki T; Pasquier LD
    Trends Immunol; 2004 Feb; 25(2):105-11. PubMed ID: 15102370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome duplication-driven evolution of gene families: insights from the formation of the insulin family.
    Olinski RP; Lundin LG; Hallböök F
    Ann N Y Acad Sci; 2005 Apr; 1040():426-8. PubMed ID: 15891079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of CUT class homeobox genes: insights from the genome of the amphioxus, Branchiostoma floridae.
    Takatori N; Saiga H
    Int J Dev Biol; 2008; 52(7):969-77. PubMed ID: 18956327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering.
    Shapiro JA
    Gene; 2005 Jan; 345(1):91-100. PubMed ID: 15716117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [DNA-based transposable elements as potential source of genome rearrangements in vertebrates].
    Koga A
    Tanpakushitsu Kakusan Koso; 2004 Oct; 49(13):2103-10. PubMed ID: 15508708
    [No Abstract]   [Full Text] [Related]  

  • 18. Transposable elements, gene creation and genome rearrangement in flowering plants.
    Bennetzen JL
    Curr Opin Genet Dev; 2005 Dec; 15(6):621-7. PubMed ID: 16219458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of novel GPCR gene coding locus in amphioxus genome: gene structure, expression, and phylogenetic analysis with implications for its involvement in chemoreception.
    Satoh G
    Genesis; 2005 Feb; 41(2):47-57. PubMed ID: 15682401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene factories, microfunctionalization and the evolution of gene families.
    Hancock JM
    Trends Genet; 2005 Nov; 21(11):591-5. PubMed ID: 16153739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.