These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 10098390)
1. Combining electrophysiological and hemodynamic measures of the auditory oddball. Opitz B; Mecklinger A; Von Cramon DY; Kruggel F Psychophysiology; 1999 Jan; 36(1):142-7. PubMed ID: 10098390 [TBL] [Abstract][Full Text] [Related]
2. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study. Justen C; Herbert C BMC Neurosci; 2018 Apr; 19(1):25. PubMed ID: 29673322 [TBL] [Abstract][Full Text] [Related]
4. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Opitz B; Rinne T; Mecklinger A; von Cramon DY; Schröger E Neuroimage; 2002 Jan; 15(1):167-74. PubMed ID: 11771985 [TBL] [Abstract][Full Text] [Related]
5. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Jemel B; Achenbach C; Müller BW; Röpcke B; Oades RD Brain Topogr; 2002; 15(1):13-27. PubMed ID: 12371672 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. Liebenthal E; Ellingson ML; Spanaki MV; Prieto TE; Ropella KM; Binder JR Neuroimage; 2003 Aug; 19(4):1395-404. PubMed ID: 12948697 [TBL] [Abstract][Full Text] [Related]
7. Effect of attention on central auditory processing: an fMRI study. Sevostianov A; Fromm S; Nechaev V; Horwitz B; Braun A Int J Neurosci; 2002 May; 112(5):587-606. PubMed ID: 12325392 [TBL] [Abstract][Full Text] [Related]
8. Direct evidence for differential roles of temporal and frontal components of auditory change detection. Shalgi S; Deouell LY Neuropsychologia; 2007 Apr; 45(8):1878-88. PubMed ID: 17239410 [TBL] [Abstract][Full Text] [Related]
9. Differential changes in frontal and sub-temporal components of mismatch negativity. Baldeweg T; Williams JD; Gruzelier JH Int J Psychophysiol; 1999 Aug; 33(2):143-8. PubMed ID: 10489078 [TBL] [Abstract][Full Text] [Related]
10. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Javitt DC; Steinschneider M; Schroeder CE; Vaughan HG; Arezzo JC Brain Res; 1994 Dec; 667(2):192-200. PubMed ID: 7697356 [TBL] [Abstract][Full Text] [Related]
11. Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: functional MRI and magnetoencephalography. Zhang YT; Geng ZJ; Zhang Q; Li W; Zhang J Chin Med J (Engl); 2006 Sep; 119(18):1548-54. PubMed ID: 16996009 [TBL] [Abstract][Full Text] [Related]
12. Maturation processes in automatic change detection as revealed by event-related brain potentials and dipole source localization: significance for adult AD/HD. Wild-Wall N; Oades RD; Juran SA Int J Psychophysiol; 2005 Oct; 58(1):34-46. PubMed ID: 15922470 [TBL] [Abstract][Full Text] [Related]
13. Frontal and temporal lobe sources for a marker of controlled auditory attention: the negative difference (Nd) event-related potential. Jemel B; Oades RD; Oknina L; Achenbach C; Röpcke B Brain Topogr; 2003; 15(4):249-62. PubMed ID: 12866829 [TBL] [Abstract][Full Text] [Related]
14. Fronto-temporal interactions in the theta-band during auditory deviant processing. Choi JW; Lee JK; Ko D; Lee GT; Jung KY; Kim KH Neurosci Lett; 2013 Aug; 548():120-5. PubMed ID: 23769731 [TBL] [Abstract][Full Text] [Related]
15. Changes in the duration and frequency of deviant stimuli engender different mismatch negativity patterns in temporal lobe epilepsy. Hirose Y; Hara K; Miyajima M; Matsuda A; Maehara T; Hara M; Matsushima E; Ohta K; Matsuura M Epilepsy Behav; 2014 Feb; 31():136-42. PubMed ID: 24412859 [TBL] [Abstract][Full Text] [Related]
16. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results]. Milner R; Rusiniak M; Wolak T; Piatkowska-Janko E; Naumczyk P; Bogorodzki P; Senderski A; Ganc M; Skarzyński H Otolaryngol Pol; 2011; 65(3):171-83. PubMed ID: 21916216 [TBL] [Abstract][Full Text] [Related]
17. Pre-attentive spectro-temporal feature processing in the human auditory system. Zaehle T; Jancke L; Herrmann CS; Meyer M Brain Topogr; 2009 Sep; 22(2):97-108. PubMed ID: 19266276 [TBL] [Abstract][Full Text] [Related]
18. The fusion of unattended duration representations as indexed by the mismatch negativity (MMN). Pfingst KA; McKenzie DN Brain Res; 2012 Jan; 1435():118-29. PubMed ID: 22197031 [TBL] [Abstract][Full Text] [Related]
19. Resting-state glutamatergic neurotransmission is related to the peak latency of the auditory mismatch negativity (MMN) for duration deviants: An (1)H-MRS-EEG study. Kompus K; Westerhausen R; Craven AR; Kreegipuu K; Põldver N; Passow S; Specht K; Hugdahl K; Näätänen R Psychophysiology; 2015 Sep; 52(9):1131-9. PubMed ID: 25917405 [TBL] [Abstract][Full Text] [Related]
20. The mismatch negativity (MMN) potential as a tool for the functional mapping of temporal lobe epilepsies. Lopes R; Simões MR; Ferraz L; Leal AJ Epilepsy Behav; 2014 Apr; 33():87-93. PubMed ID: 24632428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]