BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10098446)

  • 1. Beam intensity modulation to reduce the field sizes for conformal irradiation of lung tumors: a dosimetric study.
    Brugmans MJ; van der Horst A; Lebesque JV; Mijnheer BJ
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):893-904. PubMed ID: 10098446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of low-density lateral interfaces on soft-tissue doses.
    Hunt MA; Desobry GE; Fowble B; Coia LR
    Int J Radiat Oncol Biol Phys; 1997 Jan; 37(2):475-82. PubMed ID: 9069324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The theoretical benefit of beam fringe compensation and field size reduction for iso-normal tissue complication probability dose escalation in radiotherapy of lung cancer.
    Engelsman M; Remeijer P; van Herk M; Mijnheer B; Damen E
    Med Phys; 2003 Jun; 30(6):1086-95. PubMed ID: 12852532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beam intensity modulation for penumbra enhancement and field length reduction in lung cancer treatments: a dosimetric study.
    Dirkx ML; Heijmen BJ
    Radiother Oncol; 2000 Aug; 56(2):181-8. PubMed ID: 10927137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric comparison of flattened and unflattened beams for stereotactic ablative radiotherapy of stage I non-small cell lung cancer.
    Hrbacek J; Lang S; Graydon SN; Klöck S; Riesterer O
    Med Phys; 2014 Mar; 41(3):031709. PubMed ID: 24593713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours.
    Engelsman M; Damen EM; Koken PW; van 't Veld AA; van Ingen KM; Mijnheer BJ
    Radiother Oncol; 2001 Sep; 60(3):299-309. PubMed ID: 11514010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of beam energy and field margin on penumbra at lung tumor-lung parenchyma interfaces.
    Miller RC; Bonner JA; Kline RW
    Int J Radiat Oncol Biol Phys; 1998 Jun; 41(3):707-13. PubMed ID: 9635723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field size reduction enables iso-NTCP escalation of tumor control probability for irradiation of lung tumors.
    Engelsman M; Remeijer P; van Herk M; Lebesque JV; Mijnheer BJ; Damen EM
    Int J Radiat Oncol Biol Phys; 2001 Dec; 51(5):1290-8. PubMed ID: 11728689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EGSNRC Monte Carlo study of the effect of photon energy and field margin in phantoms simulating small lung lesions.
    Osei EK; Darko J; Mosseri A; Jezioranski J
    Med Phys; 2003 Oct; 30(10):2706-14. PubMed ID: 14596309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery.
    Vedam S; Docef A; Fix M; Murphy M; Keall P
    Med Phys; 2005 Jun; 32(6):1607-20. PubMed ID: 16013720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation of x-ray beam penumbra in conformal radiotherapy.
    Sharpe MB; Miller BM; Wong JW
    Med Phys; 2000 Aug; 27(8):1739-45. PubMed ID: 10984219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of phantom material and phantom size on radiographic film response in therapy photon beams.
    Palm A; LoSasso T
    Med Phys; 2005 Aug; 32(8):2434-42. PubMed ID: 16193772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of various beamlet sizes for IMRT with 6 MV photons.
    Sohn JW; Dempsey JF; Suh TS; Low DA
    Med Phys; 2003 Sep; 30(9):2432-9. PubMed ID: 14528965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion.
    Kanagaki B; Read PW; Molloy JA; Larner JM; Sheng K
    Phys Med Biol; 2007 Jan; 52(1):243-55. PubMed ID: 17183139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical implementation of intensity-modulated arc therapy.
    Yu CX; Li XA; Ma L; Chen D; Naqvi S; Shepard D; Sarfaraz M; Holmes TW; Suntharalingam M; Mansfield CM
    Int J Radiat Oncol Biol Phys; 2002 Jun; 53(2):453-63. PubMed ID: 12023150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer.
    Disher B; Hajdok G; Gaede S; Mulligan M; Battista JJ
    Phys Med Biol; 2013 Oct; 58(19):6641-62. PubMed ID: 24018569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MO-A-BRB-02: Facts and Fiction of Flattening Filter Free (FF-FFF) X-Rays Beams.
    Ting J
    Med Phys; 2012 Jun; 39(6Part20):3861-3862. PubMed ID: 28517518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience.
    Kestin LL; Sharpe MB; Frazier RC; Vicini FA; Yan D; Matter RC; Martinez AA; Wong JW
    Int J Radiat Oncol Biol Phys; 2000 Dec; 48(5):1559-68. PubMed ID: 11121662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy.
    Arnfield MR; Otto K; Aroumougame VR; Alkins RD
    Med Phys; 2005 Jan; 32(1):12-8. PubMed ID: 15719949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity modulated arc therapy (IMAT) with centrally blocked rotational fields.
    Cotrutz C; Kappas C; Webb S
    Phys Med Biol; 2000 Aug; 45(8):2185-206. PubMed ID: 10958188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.