These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10098617)

  • 1. Force-displacement behaviour of biological tissue during distraction osteogenesis.
    Gardner TN; Evans M; Simpson H; Kenwright J
    Med Eng Phys; 1998; 20(9):708-15. PubMed ID: 10098617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force and stiffness changes during Ilizarov leg lengthening.
    Wolfson N; Hearn TC; Thomason JJ; Armstrong PF
    Clin Orthop Relat Res; 1990 Jan; (250):58-60. PubMed ID: 2293945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue response during monofocal and bifocal leg lengthening in patients.
    Aarnes GT; Steen H; Kristiansen LP; Ludvigsen P; Reikerås O
    J Orthop Res; 2002 Jan; 20(1):137-41. PubMed ID: 11853080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distraction osteogenesis of the lower extremity with use of monolateral external fixation. A study of two hundred and sixty-one femora and tibiae.
    Noonan KJ; Leyes M; Forriol F; Cañadell J
    J Bone Joint Surg Am; 1998 Jun; 80(6):793-806. PubMed ID: 9655097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distraction epiphysiolysis as a method of limb lengthening. III. Clinical applications.
    Monticelli G; Spinelli R
    Clin Orthop Relat Res; 1981; (154):274-85. PubMed ID: 7471565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regeneration formation index--new method of quantitative evaluation of distraction osteogenesis].
    Tesiorowski M; Potaczek T; Jasiewicz B; Kacki W; Łokas K
    Chir Narzadow Ruchu Ortop Pol; 2009; 74(3):121-6. PubMed ID: 19777941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leg lengthening using intramedullay skeletal kinetic distractor: results of 57 consecutive applications.
    Kenawey M; Krettek C; Liodakis E; Wiebking U; Hankemeier S
    Injury; 2011 Feb; 42(2):150-5. PubMed ID: 20638660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of distraction-resisting forces on the tibia during distraction osteogenesis.
    Shyam AK; Song HR; An H; Isaac D; Shetty GM; Lee SH
    J Bone Joint Surg Am; 2009 Jul; 91(7):1671-82. PubMed ID: 19571090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX(®))-preliminary results.
    Thaller PH; Fürmetz J; Wolf F; Eilers T; Mutschler W
    Injury; 2014 Jan; 45 Suppl 1():S60-5. PubMed ID: 24321414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical properties of tendons during lower-leg lengthening in dogs using the Ilizarov method.
    Fink B; Schwinger G; Singer J; Schmielau G; Rüther W
    J Biomech; 1999 Aug; 32(8):763-8. PubMed ID: 10433417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous monitoring of forces during tibial lengthening by distraction epiphysiolysis.
    van Roermund PM; Wijlens RA; Renooij W
    Acta Orthop Belg; 1992; 58(1):63-8. PubMed ID: 1561874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisphosphonate rescue in distraction osteogenesis: a case series.
    Kiely P; Ward K; Bellemore C M; Briody J; Cowell CT; Little DG
    J Pediatr Orthop; 2007 Jun; 27(4):467-71. PubMed ID: 17513972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of examining the magnitude and origin of "soft" and "hard" tissue forces resisting limb lengthening.
    Gardner TN; Evans M; Simpson AH; Kyberd PJ; Kenwright J
    Med Eng Phys; 1997 Jul; 19(5):405-11. PubMed ID: 9338880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forces involved in lower limb lengthening: an in vivo biomechanical study.
    Lauterburg MT; Exner GU; Jacob HA
    J Orthop Res; 2006 Sep; 24(9):1815-22. PubMed ID: 16865711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic growth peptide accelerates bone healing during distraction osteogenesis in rabbit tibia.
    Zhao ZY; Shao L; Zhao HM; Zhong ZH; Liu JY; Hao CG
    J Int Med Res; 2011; 39(2):456-63. PubMed ID: 21672349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing bone regenerate healing in distraction osteogenesis.
    Koczewski P; Shadi M
    Ortop Traumatol Rehabil; 2013; 15(6):591-9. PubMed ID: 24662906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distraction-resisting force during tibial diaphyseal lengthening and consolidation--a study on a rabbit model.
    Cai G; Saleh M; Coulton L; Yang L
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):733-7. PubMed ID: 15288460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High frequency distraction improves tissue adaptation during leg lengthening in humans.
    Aarnes GT; Steen H; Ludvigsen P; Kristiansen LP; Reikerås O
    J Orthop Res; 2002 Jul; 20(4):789-92. PubMed ID: 12168668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distraction osteogenesis for lengthening of the tibia in patients who have limb-length discrepancy or short stature.
    Aldegheri R
    J Bone Joint Surg Am; 1999 May; 81(5):624-34. PubMed ID: 10360691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is there an Increase in Valgus Deviation in Tibial Distraction Using the Lengthening Over Nail Technique?
    Park H; Ryu KJ; Kim HW; Hwang JH; Han JW; Lee DH
    Clin Orthop Relat Res; 2016 May; 474(5):1283-91. PubMed ID: 26825816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.