BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10098651)

  • 1. A new generation of fluorescent chemosensors demonstrate improved analyte detection sensitivity and photobleaching resistance.
    Rothman JH; Still WC
    Bioorg Med Chem Lett; 1999 Feb; 9(4):509-12. PubMed ID: 10098651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidyl fluorescent chemosensors for the detection of divalent copper.
    Zheng Y; Cao X; Orbulescu J; Konka V; Andreopoulos FM; Pham SM; Leblanc RM
    Anal Chem; 2003 Apr; 75(7):1706-12. PubMed ID: 12705606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective and sensitive fluorescent turn-off chemosensors for Fe3+.
    Fu L; Mei J; Zhang JT; Liu Y; Jiang FL
    Luminescence; 2013; 28(4):602-6. PubMed ID: 22987738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two rhodamine derived chemosensors excited by up-conversion lattice for cysteine detection: Synthesis, characterization and sensing behavior.
    Pu W; Lisha W; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():223-30. PubMed ID: 26852112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of various bicolor fluorescent micropatterns on a single polymer film based on concurrent photobleaching and photobase generation.
    Chae KH; Kim HS
    Macromol Rapid Commun; 2015 Mar; 36(6):558-65. PubMed ID: 25676680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprobes based on AIE fluorogens.
    Ding D; Li K; Liu B; Tang BZ
    Acc Chem Res; 2013 Nov; 46(11):2441-53. PubMed ID: 23742638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A colormetric and fluorescent chemosensor for adenosine-5'-triphosphate based on rhodamine derivative.
    Li CY; Zou CX; Li YF; Kong XF; Zhou Y; Wu YS; Zhu WG
    Anal Chim Acta; 2013 Sep; 795():69-74. PubMed ID: 23998539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrene Excimer-Based Peptidyl Chemosensors for the Sensitive Detection of Low Levels of Heparin in 100% Aqueous Solutions and Serum Samples.
    Thirupathi P; Park JY; Neupane LN; Kishore MY; Lee KH
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14243-53. PubMed ID: 26068096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent chemosensors for Zn(2+).
    Xu Z; Yoon J; Spring DR
    Chem Soc Rev; 2010 Jun; 39(6):1996-2006. PubMed ID: 20428518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a ratiometric fluorescent peptide sensor for the highly selective detection of Cd2+.
    Li Y; Li L; Pu X; Ma G; Wang E; Kong J; Liu Z; Liu Y
    Bioorg Med Chem Lett; 2012 Jun; 22(12):4014-7. PubMed ID: 22579421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral recognition by fluorescent chemosensors based on N-dansyl-amino acid-modified cyclodextrins.
    Ikeda H; Li Q; Ueno A
    Bioorg Med Chem Lett; 2006 Oct; 16(20):5420-3. PubMed ID: 16890432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.
    Piao J; Lv J; Zhou X; Zhao T; Wu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():475-80. PubMed ID: 24682064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of dual-emission chemosensors for ratiometric detection of ATP derivatives.
    Ojida A; Miyahara Y; Wongkongkatep J; Tamaru S; Sada K; Hamachi I
    Chem Asian J; 2006 Oct; 1(4):555-63. PubMed ID: 17441093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiourea-based fluorescent chemosensors for aqueous metal ion detection and cellular imaging.
    Vonlanthen M; Connelly CM; Deiters A; Linden A; Finney NS
    J Org Chem; 2014 Jul; 79(13):6054-60. PubMed ID: 24957917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive ratiometric chemosensor for selective 'naked-eye' nanomolar detection of Co(2+) in semi-aqueous media.
    Patil S; Fegade U; Sahoo SK; Singh A; Marek J; Singh N; Bendre R; Kuwar A
    Chemphyschem; 2014 Aug; 15(11):2230-5. PubMed ID: 24819561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A peptide-based fluorescent chemosensor for measuring cadmium ions in aqueous solutions and live cells.
    Wang P; Wu J; Liu L; Zhou P; Ge Y; Liu D; Liu W; Tang Y
    Dalton Trans; 2015 Nov; 44(41):18057-64. PubMed ID: 26411376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent sensing of anions with acridinedione based neutral PET chemosensor.
    Thiagarajan V; Ramamurthy P
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):772-7. PubMed ID: 17081799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin-film ratiometric fluorescent chemosensors with tunable performance characteristics.
    Imsick BG; Acharya JR; Nesterov EE
    Chem Commun (Camb); 2013 Aug; 49(63):7043-5. PubMed ID: 23821123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeleton-selective fluorescent chemosensor based on cyclodextrin bearing a 4-amino-7-nitrobenz-2-oxa-1,3-diazole moiety.
    Ikeda H; Murayama T; Ueno A
    Org Biomol Chem; 2005 Dec; 3(23):4262-7. PubMed ID: 16294257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A peptide-based fluorescent chemosensor for multianalyte detection.
    Wang P; Liu L; Zhou P; Wu W; Wu J; Liu W; Tang Y
    Biosens Bioelectron; 2015 Oct; 72():80-6. PubMed ID: 25957834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.