These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 10099287)

  • 1. Removal of nitrate from industrial wastewaters in a pilot plant by nitrate-tolerant klebsiella oxytoca CECT 4460 and arthrobacter globiformis CECT 4500.
    Pinar G; Oliva JM; Sanchez-Barbero L; Calvo V; Ramos JL
    Biotechnol Bioeng; 1998 Jun; 58(5):510-4. PubMed ID: 10099287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strain of Arthrobacter that tolerates high concentrations of nitrate.
    Piñar G; Ramos JL
    Biodegradation; 1997-1998; 8(6):393-9. PubMed ID: 15765585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of high concentrations of nitrate from industrial wastewaters by bacteria.
    Pinar G; Duque E; Haidour A; Oliva J; Sanchez-Barbero L; Calvo V; Ramos JL
    Appl Environ Microbiol; 1997 May; 63(5):2071-3. PubMed ID: 16535614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures.
    Piñar G; Kovárová K; Egli T; Ramos JL
    Appl Environ Microbiol; 1998 Aug; 64(8):2970-6. PubMed ID: 9687459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant klebsiella oxytoca strains with improved efficiency in removal of high nitrate loads.
    Pinar G; Ramos JL
    Appl Environ Microbiol; 1998 Dec; 64(12):5016-9. PubMed ID: 9835599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10.
    He T; Xie D; Li Z; Ni J; Sun Q
    Bioresour Technol; 2017 Sep; 239():66-73. PubMed ID: 28500889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of nitrate and nitrite in a cyclically operated continuous biological reactor.
    Wang JH; Baltzis BC; Lewandowski GA
    Biotechnol Bioeng; 1995 Apr; 46(2):159-71. PubMed ID: 18623275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water.
    Kavitha S; Selvakumar R; Sathishkumar M; Swaminathan K; Lakshmanaperumalsamy P; Singh A; Jain SK
    Water Sci Technol; 2009; 60(2):517-24. PubMed ID: 19633395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological nitrate removal from wastewater of a metal-finishing industry.
    Gabaldón C; Izquierdo M; Martínez-Soria V; Marzal P; Penya-Roja JM; Javier Alvarez-Hornos F
    J Hazard Mater; 2007 Sep; 148(1-2):485-90. PubMed ID: 17416463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and phosphate uptake of a high phosphate accumulating bacterium, Arthrobacter globiformis PAB-6 in continuous culture.
    Tamatani H; Shoda M; Udaka S
    Biotechnol Bioeng; 1983 Jul; 25(7):1781-8. PubMed ID: 18551481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.
    Hong X; Chen Z; Zhao C; Yang S
    World J Microbiol Biotechnol; 2017 Jun; 33(6):113. PubMed ID: 28470424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of nitrate/nitrite bioavailability in wastewater using a luxCDABE-based Klebsiella oxytoca bioluminescent bioreporter.
    Abd-El-Haleem D; Ripp S; Zaki S; Sayler GS
    J Microbiol Biotechnol; 2007 Aug; 17(8):1254-61. PubMed ID: 18051593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-lysine production by S-2-aminoethyl-L-cysteine-resistant mutants of Arthrobacter globiformis.
    Samanta TK; Bhattacharyya R
    Folia Microbiol (Praha); 1991; 36(1):59-66. PubMed ID: 1841850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil.
    Eschbach M; Möbitz H; Rompf A; Jahn D
    FEMS Microbiol Lett; 2003 Jun; 223(2):227-30. PubMed ID: 12829291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the effect of copper and magnesium ions on nitrogen removal capacity of pure cultures by modified non-competitive inhibition model.
    He T; Xie D; Ni J; Cai X; Li Z
    Ecotoxicol Environ Saf; 2019 Apr; 170():479-487. PubMed ID: 30553926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine.
    Sharma M; Mishra V; Rau N; Sharma RS
    J Basic Microbiol; 2016 Jul; 56(7):719-35. PubMed ID: 26632776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of nitrate esters by a consortium of two bacteria.
    Ramos JL; Haïdour A; Duque E; Piñar G; Calvo V; Oliva JM
    Nat Biotechnol; 1996 Mar; 14(3):320-2. PubMed ID: 9630893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia.
    Leta S; Assefa F; Gumaelius L; Dalhammar G
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):333-9. PubMed ID: 15316686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system.
    Manconi I; Carucci A; Lens P
    Biotechnol Bioeng; 2007 Oct; 98(3):551-60. PubMed ID: 17724757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.