These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 1009936)

  • 1. Template activity of synthetic deoxyribonucleotide polymers in the eukaryotic DNA-dependent RNA polymerase reaction.
    Sasaki Y; Goto H; Ohta H; Kamikubo T
    Eur J Biochem; 1976 Nov; 70(2):369-75. PubMed ID: 1009936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Template specificity of DNA-dependent RNA polymerase I and II for synthetic polynucleotides during development of the cellular slime mold Dictyostelium discoideum.
    Takiya S; Takoh Y; Iwabuchi M
    J Biochem; 1980 May; 87(5):1501-9. PubMed ID: 7390995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-dependent RNA polymerase III from cauliflower. Characterization and template specificity.
    Sasaki Y; Goto H; Tomi H; Kamikubo T
    Biochim Biophys Acta; 1978 Jan; 517(1):205-15. PubMed ID: 623758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparisons of the fidelity of transcription of RNA polymerase I and II following N-hydroxy-2-acetylaminofluorene treatment.
    Glazer RI
    Nucleic Acids Res; 1978 Jul; 5(7):2607-16. PubMed ID: 353743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function of transcription termination factor rho in a model transcription system using synthetic deoxyribonucleic acid as template.
    Shigesada K; Imai M
    Biochemistry; 1982 Nov; 21(23):5849-56. PubMed ID: 6185141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of heparin-resistant complex formation and RNA synthesis by wheat germ RNA polymerases I, II and III, in vitro on cauliflower mosaic virus DNA.
    Cooke R; Durand R; Teissere M; Penon P; Ricard J
    Biochem Biophys Res Commun; 1981 Jan; 98(1):36-42. PubMed ID: 6163430
    [No Abstract]   [Full Text] [Related]  

  • 7. A protein cofactor that stimulates the activity of DNA-dependent RNA polymerase I on double-stranded DNA.
    Goldberg MI; Perriard JC; Rutter WJ
    Biochemistry; 1977 Apr; 16(8):1648-54. PubMed ID: 851526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template properties of rat liver chromatin after restricted protein supply; trascription by homologous ribonucleic acid polymerase I and II.
    von der Decken A; Andersson GM
    J Nutr; 1977 Jun; 107(6):949-58. PubMed ID: 864523
    [No Abstract]   [Full Text] [Related]  

  • 9. Transcription of synthetic DNA containing sequences with dyad symmetry by wheat-germ RNA polymerase II. Increased rates of product release in single-step addition reactions.
    Job D; Job C; de Mercoyrol L; Shire D
    Eur J Biochem; 1991 Feb; 195(3):831-9. PubMed ID: 1999201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of the binding of RNA polymerase to template in mouse liver nuclei.
    Warnick CT; Lazarus HM
    Mol Cell Biochem; 1983; 55(2):113-8. PubMed ID: 6633512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex RNA chain elongation kinetics by wheat germ RNA polymerase II.
    Job D; Durand R; Job C; Teissere M
    Nucleic Acids Res; 1984 Apr; 12(7):3303-19. PubMed ID: 6201828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in DNA-dependent RNA polymerase I and II from rat liver by thioacetamide: preferential increase in the level of chromatin-associated nucleolar RNA polymerase IB.
    Leonard TB; Jacob ST
    Biochemistry; 1977 Oct; 16(20):4538-44. PubMed ID: 911772
    [No Abstract]   [Full Text] [Related]  

  • 13. Template specificities of aclacinomycin B on the inhibition of DNA-dependent RNA synthesis in vitro.
    Li LH; Yu FL
    Mol Cell Biochem; 1989 Oct; 90(1):91-7. PubMed ID: 2481810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eukaryotic ternary transcription complexes. I. The release of ternary transcription complexes of RNA polymerases I and II by the endogenous nucleases of rat liver nuclei.
    Sargan DR; Butterworth PH
    Nucleic Acids Res; 1982 Aug; 10(15):4641-53. PubMed ID: 6215625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic analysis of the interaction of Escherichia coli DNA-dependent RNA polymerase with T7 DNA and synthetic polynucleotides.
    Reisbig RR; Woody AY; Woody RW
    J Biol Chem; 1979 Nov; 254(22):11208-17. PubMed ID: 387767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-processive transcription of poly[d(A-T)] by wheat germ RNA polymerase II.
    Durand R; Job C; Teissère M; Job D
    FEBS Lett; 1982 Dec; 150(2):477-81. PubMed ID: 7160487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison between homologous and heterologous RNA polymerase recognition sites during in vitro chromatin transcription.
    Tomi H; Sasaki Y; Kamikubo T
    J Biochem; 1981 Dec; 90(6):1705-14. PubMed ID: 7334005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription in vitro of cauliflower mosaic virus DNA by RNA polymerase I, II, and III purified from wheat embryos.
    Teissère M; Durand R; Ricard J; Cooke R; Penon P
    Biochem Biophys Res Commun; 1979 Jul; 89(2):526-33. PubMed ID: 486178
    [No Abstract]   [Full Text] [Related]  

  • 19. Eukaryotic DNA-dependent RNA polymerases: structural and immunological characterization.
    Guilfoyle TJ; Malcolm S; Hagen G
    Isozymes Curr Top Biol Med Res; 1983; 7():241-61. PubMed ID: 6350220
    [No Abstract]   [Full Text] [Related]  

  • 20. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I.
    Vilpo JA; Ridell J
    Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.