These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10099361)

  • 1. Colloidal gas aphrons: A novel approach to protein recovery.
    Jauregi P; Varley J
    Biotechnol Bioeng; 1998 Aug; 59(4):471-81. PubMed ID: 10099361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An insight into the mechanism of protein separation by colloidal gas aphrons (CGA) generated from ionic surfactants.
    Fuda E; Jauregi P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 843(2):317-26. PubMed ID: 16891165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons (CGAs) generated from an anionic surfactant, AOT.
    Fuda E; Jauregi P; Pyle DL
    Biotechnol Prog; 2004; 20(2):514-25. PubMed ID: 15058997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein recovery using gas-liquid dispersions.
    Noble M; Brown A; Jauregi P; Kaul A; Varley J
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 711(1-2):31-43. PubMed ID: 9699972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system.
    Zhang M; Guiraud P
    Water Res; 2017 Dec; 126():399-410. PubMed ID: 28987891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of astaxanthin from cells of Phaffia rhodozyma using colloidal gas aphrons in a flotation column.
    Dermiki M; Bourquin AL; Jauregi P
    Biotechnol Prog; 2010; 26(2):477-87. PubMed ID: 19941328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective separation of beta-lactoglobulin from sweet whey using CGAs generated from the cationic surfactant CTAB.
    Fuda E; Bhatia D; Pyle DL; Jauregi P
    Biotechnol Bioeng; 2005 Jun; 90(5):532-42. PubMed ID: 15816026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal gas aphrons for biotechnology applications: a mini review.
    Pal P; Hasan SW; Abu Haija M; Sillanpää M; Banat F
    Crit Rev Biotechnol; 2023 Dec; 43(7):971-981. PubMed ID: 35968911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein recovery from surfactant precipitation.
    Cheng SI; Stuckey DC
    Biotechnol Prog; 2011; 27(6):1614-22. PubMed ID: 22235487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downstream protein separation by surfactant precipitation: a review.
    Wong FWF; Ariff AB; Stuckey DC
    Crit Rev Biotechnol; 2018 Feb; 38(1):31-46. PubMed ID: 28427287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of Candida rugosa lipase on colloidal gas aphrons (CGAs).
    O'Connell PJ; Varley J
    Biotechnol Bioeng; 2001 Aug; 74(3):264-9. PubMed ID: 11400100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aphron applications--a review of recent and current research.
    Molaei A; Waters KE
    Adv Colloid Interface Sci; 2015 Feb; 216():36-54. PubMed ID: 25578407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.
    Ward K; Xi J; Stuckey DC
    Colloids Surf B Biointerfaces; 2015 Dec; 136():424-30. PubMed ID: 26440758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal gas aphrons: potential applications in biotechnology.
    Jauregi P; Varley J
    Trends Biotechnol; 1999 Oct; 17(10):389-95. PubMed ID: 10481170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse micellar extraction and precipitation of lysozyme using sodium di(2-ethylhexyl) sulfosuccinate.
    Shin YO; Weber ME; Vera JH
    Biotechnol Prog; 2003; 19(3):928-35. PubMed ID: 12790659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of alpha-lactalbumin on the phase behavior of AOT-brine-isooctane mixtures: role of charge interactions.
    Shimek JW; Rohloff CM; Goldberg J; Dungan SR
    Langmuir; 2005 Jun; 21(13):5931-9. PubMed ID: 15952844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions: definition of the critical dispersion concentration.
    Dederichs T; Möller M; Weichold O
    Langmuir; 2009 Feb; 25(4):2007-12. PubMed ID: 19146423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Candida cylindracea lipase on colloidal liquid aphrons (CLAs) and development of a continuous CLA-membrane reactor.
    Lye GJ; Pavlou OP; Rosjidi M; Stuckey DC
    Biotechnol Bioeng; 1996 Jul; 51(1):69-78. PubMed ID: 18627089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous foaming for protein recovery: part II. Selective recovery of proteins from binary mixtures.
    Brown AK; Kaul A; Varley J
    Biotechnol Bioeng; 1999 Feb; 62(3):291-300. PubMed ID: 10099540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of effects of pH and ionic strength on colloidal stability of IgG solutions by PEG-induced liquid-liquid phase separation.
    Thompson RW; Latypov RF; Wang Y; Lomakin A; Meyer JA; Vunnum S; Benedek GB
    J Chem Phys; 2016 Nov; 145(18):185101. PubMed ID: 27846698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.