BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

978 related articles for article (PubMed ID: 10099380)

  • 1. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J; Karlsson J; Lee D; Tjerneld F
    Biotechnol Bioeng; 1998 Sep; 59(5):621-34. PubMed ID: 10099380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose.
    Medve J; Ståhlberg J; Tjerneld F
    Biotechnol Bioeng; 1994 Nov; 44(9):1064-73. PubMed ID: 18623023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes.
    Kleywegt GJ; Zou JY; Divne C; Davies GJ; Sinning I; Stâhlberg J; Reinikainen T; Srisodsuk M; Teeri TT; Jones TA
    J Mol Biol; 1997 Sep; 272(3):383-97. PubMed ID: 9325098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis of steam-pretreated lignocellulose: synergism and adsorption for cellobiohydrolase I and endoglucanase II of Trichoderma reesei.
    Karlsson J; Medve J; Tjerneld F
    Appl Biochem Biotechnol; 1999 Dec; 82(3):243-58. PubMed ID: 15304773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and activity of Trichoderma reesei cellobiohydrolase I, endoglucanase II, and the corresponding core proteins on steam pretreated willow.
    Kotiranta P; Karlsson J; Siika-Aho M; Medve J; Viikari L; Tjerneld F; Tenkanen M
    Appl Biochem Biotechnol; 1999 Aug; 81(2):81-90. PubMed ID: 10581675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palladium--a new inhibitor of cellulase activities.
    Shultz MD; Lassig JP; Gooch MG; Evans BR; Woodward J
    Biochem Biophys Res Commun; 1995 Apr; 209(3):1046-52. PubMed ID: 7733957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cellobiohydrolase I from Trichoderma reesei by palladium.
    Lassig JP; Shultz MD; Gooch MG; Evans BR; Woodward J
    Arch Biochem Biophys; 1995 Sep; 322(1):119-26. PubMed ID: 7574665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis.
    Nidetzky B; Steiner W; Claeyssens M
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):817-23. PubMed ID: 7980450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose.
    Medve J; Ståhlberg J; Tjerneld F
    Appl Biochem Biotechnol; 1997 Apr; 66(1):39-56. PubMed ID: 9204518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass.
    Gao D; Chundawat SP; Uppugundla N; Balan V; Dale BE
    Biotechnol Bioeng; 2011 Aug; 108(8):1788-800. PubMed ID: 21437882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose.
    Woodward J; Lima M; Lee NE
    Biochem J; 1988 Nov; 255(3):895-9. PubMed ID: 3214429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis.
    Jalak J; Väljamäe P
    Biotechnol Bioeng; 2010 Aug; 106(6):871-83. PubMed ID: 20506147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: the enzyme-substrate complex.
    Zhong L; Matthews JF; Hansen PI; Crowley MF; Cleary JM; Walker RC; Nimlos MR; Brooks CL; Adney WS; Himmel ME; Brady JW
    Carbohydr Res; 2009 Oct; 344(15):1984-92. PubMed ID: 19699474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose.
    Gusakov AV; Salanovich TN; Antonov AI; Ustinov BB; Okunev ON; Burlingame R; Emalfarb M; Baez M; Sinitsyn AP
    Biotechnol Bioeng; 2007 Aug; 97(5):1028-38. PubMed ID: 17221887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates.
    Kipper K; Väljamäe P; Johansson G
    Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei.
    Eriksson T; Karlsson J; Tjerneld F
    Appl Biochem Biotechnol; 2002 Apr; 101(1):41-60. PubMed ID: 12008866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three forms of cellobiohydrolase I from Trichoderma reesei.
    Chen H; Hayn M; Esterbauer H
    Biochem Mol Biol Int; 1993 Aug; 30(5):901-10. PubMed ID: 8220239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I.
    Väljamäe P; Sild V; Nutt A; Pettersson G; Johansson G
    Eur J Biochem; 1999 Dec; 266(2):327-34. PubMed ID: 10561572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction.
    Nidetzky B; Steiner W; Hayn M; Claeyssens M
    Biochem J; 1994 Mar; 298 Pt 3(Pt 3):705-10. PubMed ID: 8141786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.