These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10099408)

  • 41. Protein overproduction in Escherichia coli: RNA stabilization, cell disruption and recovery with a cross-flow microfiltration membrane.
    Chan WK; Belfort M; Belfort G
    J Biotechnol; 1991 May; 18(3):225-42. PubMed ID: 1370041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study of protein adsorption effects on crossflow filtration using BSA and milk protein.
    Colton RH; Pahl I; Ottaviano LE; Bodeutsch T; Meyeroltmanns F
    PDA J Pharm Sci Technol; 2002; 56(1):20-30. PubMed ID: 11865780
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of membrane property and feed water organic matter quality on long-term performance of the gravity-driven membrane filtration process.
    Lee D; Lee Y; Choi SS; Lee SH; Kim KW; Lee Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1152-1162. PubMed ID: 28721617
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Capture of bacteria from fermentation broth by body feed filtration: a solved problem?
    O'Mahony K; Freitag R; Dhote B; Hilbrig F; Müller P; Schumacher I
    Biotechnol Prog; 2006; 22(2):471-83. PubMed ID: 16599565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis.
    Li ZY; Yangali-Quintanilla V; Valladares-Linares R; Li Q; Zhan T; Amy G
    Water Res; 2012 Jan; 46(1):195-204. PubMed ID: 22094000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crossflow filtration for CHO cell separation by microfiltration using crossflow systems.
    Eberlein R; Meyeroltmanns F; Pahl I; Prashad M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):243-8. PubMed ID: 15954595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Membrane fouling by cell-protein mixtures: in situ characterisation using multi-photon microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Biotechnol Bioeng; 2007 Apr; 96(6):1083-91. PubMed ID: 16933334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling the influence of slurry concentration on Saccharomyces cerevisiae cake porosity and resistance during microfiltration.
    Mota M; Flickinger MC
    Biotechnol Prog; 2012; 28(6):1534-41. PubMed ID: 23011664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth behaviors of bacteria in biofouling cake layer in a dead-end microfiltration system.
    Chao Y; Zhang T
    Bioresour Technol; 2011 Jan; 102(2):1549-55. PubMed ID: 20888760
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential.
    Pramanik BK; Roddick FA; Fan L
    Water Res; 2016 Mar; 90():405-414. PubMed ID: 26773606
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization.
    Jokić A; Lukić N; Pajčin I; Vlajkov V; Dmitrović S; Grahovac J
    Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transient and stationary operating conditions on performance of lactic acid bacteria crossflow microfiltration.
    Boyaval P; Lavenant C; Gésan G; Daufin G
    Biotechnol Bioeng; 1996 Jan; 49(1):78-86. PubMed ID: 18623556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Permeate flux optimisation of a pilot microfiltration plant for cost-effectiveness of water reclamation for reuse.
    Xie RJ; Gomez MJ; Xing YJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1169-81. PubMed ID: 16854793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of membrane length, membrane resistance, and filtration conditions on the fractionation of milk proteins by microfiltration.
    Piry A; Heino A; Kühnl W; Grein T; Ripperger S; Kulozik U
    J Dairy Sci; 2012 Apr; 95(4):1590-602. PubMed ID: 22459807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A preliminary study on electrically enhanced crossflow microfiltration of CMP (chemical-mechanical polishing) wastewater.
    Yang GC; Yang TY; Tsai SH
    Water Sci Technol; 2002; 46(11-12):171-6. PubMed ID: 12523750
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clarification of vaccines: An overview of filter based technology trends and best practices.
    Besnard L; Fabre V; Fettig M; Gousseinov E; Kawakami Y; Laroudie N; Scanlan C; Pattnaik P
    Biotechnol Adv; 2016; 34(1):1-13. PubMed ID: 26657051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfiltration of recombinant yeast cells using a rotating disk dynamic filtration system.
    Lee SS; Burt A; Russotti G; Buckland B
    Biotechnol Bioeng; 1995 Nov; 48(4):386-400. PubMed ID: 18623499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the scale-up of microfiltration membrane devices.
    Brose DJ; Cates S; Hutchison FA
    PDA J Pharm Sci Technol; 1994; 48(4):184-8. PubMed ID: 7804817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of reverse osmosis membrane fouling characteristics in full-scale leachate treatment systems with chemical coagulation and microfiltration pre-treatments.
    Rukapan W; Khananthai B; Srisukphun T; Chiemchaisri W; Chiemchaisri C
    Water Sci Technol; 2015; 71(4):580-7. PubMed ID: 25746651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.