BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10099613)

  • 61. [Synthesis of the tripeptide glycyl-L-leucyl-L-phenylalanine and its analogs].
    Esipova OV; Eremin SV; Zvonkova EN
    Bioorg Khim; 1991 Aug; 17(8):1077-85. PubMed ID: 1750836
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enzymatic chemoselective synthesis of secondary-amide surfactant from N-methylethanol amine.
    Sharma J; Batovska D; Kuwamori Y; Asano Y
    J Biosci Bioeng; 2005 Dec; 100(6):662-6. PubMed ID: 16473777
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protease-catalyzed synthesis of Leu-enkephalin in a solvent-free system.
    Klein JU; Cerovský V
    Int J Pept Protein Res; 1996 May; 47(5):348-52. PubMed ID: 8791157
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reduction of benzaldehyde catalyzed by papain-based semisynthetic enzymes.
    Chen CX; Jiang B; Carrey EA; Zhu LM
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1506-16. PubMed ID: 20383756
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pepsin-catalyzed peptide synthesis in organic media: studies with free and immobilized enzyme.
    Bemquerer MP; Adlercreutz P; Tominaga M
    Int J Pept Protein Res; 1994 Nov; 44(5):448-56. PubMed ID: 7896503
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Papain-catalysed synthesis of dipeptides: a novel approach using free amino acids as nucleophiles.
    Stehle P; Bahsitta HP; Monter B; Fürst P
    Enzyme Microb Technol; 1990 Jan; 12(1):56-60. PubMed ID: 1366382
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kinetics of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester.
    Nakanishi K; Matsuno R
    Eur J Biochem; 1986 Dec; 161(3):533-40. PubMed ID: 3792307
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enzymatic synthesis of the precursor of Leu-enkephalin in water-immiscible organic solvent systems.
    Kimura Y; Nakanishi K; Matsuno R
    Enzyme Microb Technol; 1990 Apr; 12(4):272-80. PubMed ID: 1366523
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Peptide synthesis catalyzed by papain at alkaline pH values.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Int J Pept Protein Res; 1984 May; 23(5):528-34. PubMed ID: 6735591
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enzyme catalyzed biotransformations in aqueous two-phase systems with precipitated substrate and/or product.
    Kasche V; Galunsky B
    Biotechnol Bioeng; 1995 Feb; 45(3):261-7. PubMed ID: 18623146
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Determination of the distribution of catalyst activity across a permeable membrane containing an immobilized enzyme. Indeterminacy of a functional approach to a structural problem.
    Bunow B; Caplan SR
    Biophys J; 1984 Jun; 45(6):1065-71. PubMed ID: 6743743
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Non-conventional enzyme catalysis: application of proteases and zymogens in biotransformations.
    Jakubke HD; Eichhorn U; Hänsler M; Ullmann D
    Biol Chem; 1996; 377(7-8):455-64. PubMed ID: 8922279
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reaction engineering for consecutive enzymatic reactions in peptide synthesis: application to the synthesis of a pentapeptide.
    Ruiz S; Feliu JA; Caminal G; Alvaro G; López-Santín J
    Biotechnol Prog; 1997; 13(6):783-7. PubMed ID: 9413136
    [TBL] [Abstract][Full Text] [Related]  

  • 74. On the importance of the support material for enzymatic synthesis in organic media. Support effects at controlled water activity.
    Adlercreutz P
    Eur J Biochem; 1991 Aug; 199(3):609-14. PubMed ID: 1868847
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Synthesis of aspartame precursor with an immobilized thermolysin in mixed organic solvents.
    Miyanaga M; Tanaka T; Sakiyama T; Nakanishi K
    Biotechnol Bioeng; 1995 Jun; 46(6):631-5. PubMed ID: 18623359
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of successive increase in alcohol chains on reaction with isocyanates and isothiocyanates.
    Perveen S; Yasmin A; Khan KM
    Nat Prod Res; 2010; 24(1):18-23. PubMed ID: 20013468
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A new approach to preparative enzymatic synthesis. Reprinted from Biotechnology and Bioengineering, Vol. XIX, No. 9, Pages 1351-1361.
    Klibanov AM; Samokhin GP; Martinek K; Berezin IV
    Biotechnol Bioeng; 2000 Mar; 67(6):737-47. PubMed ID: 10699855
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis of highly pure dolichyl and cholesteryl esters.
    Piretti MV; Pagliuca G
    Ital J Biochem; 1996 Jun; 45(2):67-9. PubMed ID: 8956904
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reaction medium engineering in enzymatic peptide fragment condensation: synthesis of eledoisin and LH-RH.
    Björup P; Torres JL; Adlercreutz P; Clapés P
    Bioorg Med Chem; 1998 Jul; 6(7):891-901. PubMed ID: 9730225
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthesis of Butyl-β-D-Galactoside in the Ternary System: Acetone/1-Butanol/Aqueous Solution.
    Ahumada D; Arenas F; Martínez-Gómez F; Guerrero C; Illanes A; Vera C
    Front Bioeng Biotechnol; 2020; 8():859. PubMed ID: 32793582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.