BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1009966)

  • 1. Use of methyl iodide for probing the polarity of the immediate environment of --SH groups in thiolenzymes. Reaction of methyl iodide with thiosubtilisin.
    Halász P; Polgár L
    Eur J Biochem; 1976 Dec; 71(2):563-9. PubMed ID: 1009966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the immediate environment on the reactivity of the essential -SH group of papain.
    Halász P; Polgár L
    Eur J Biochem; 1976 Dec; 71(2):571-5. PubMed ID: 12971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation of the active site of thiolsubtilisin: reaction with specific chloromethyl ketones and arylacryloylimidazoles.
    Tsai IH; Bender ML
    Biochemistry; 1979 Aug; 18(17):3764-8. PubMed ID: 476086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negatively charged reactants as probes in the study of the essential mercaptide-imidazolium ion-pair of thiolenzymes.
    Halász P; Polgár L
    Eur J Biochem; 1977 Oct; 79(2):491-4. PubMed ID: 923564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of L-ergothioneine and some other aminothiones with2,2'-and 4,4'-dipyridyl disulphides and of L-ergothioneine with iodoacetamide. 2-Mercaptoimidazoles, 2- and 4-thiopyridones, thiourea and thioacetamide as highly reactive neutral sulphur nucleophils.
    Carlsson J; Kierstan MP; Brocklehurst K
    Biochem J; 1974 Apr; 139(1):221-35. PubMed ID: 4463944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of subtilisin and thiolsubtilisin.
    Philipp M; Bender ML
    Mol Cell Biochem; 1983; 51(1):5-32. PubMed ID: 6343835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of glutathione on the formation of cysteine alkylation products in human hemoglobin.
    Evelo CT; Henderson PT
    Toxicology; 1988 Nov; 52(1-2):177-86. PubMed ID: 3188031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the kinetic specificity of subtilisin and thiolsubtilisin toward n-alkyl p-nitrophenyl esters.
    Philipp M; Tsai IH; Bender ML
    Biochemistry; 1979 Aug; 18(17):3769-73. PubMed ID: 38838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-pair formation as a source of enhanced reactivity of the essential thiol group of D-glyceraldehyde-3-phosphate dehydrogenase.
    Polgár L
    Eur J Biochem; 1975 Feb; 51(1):63-71. PubMed ID: 235434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the lack of high catalytic activity of thiolsubtilisin towards specific substrates may be due to an inappropriately located proton-distribution system. Demonstration of highly nucleophilic character of the thiol group of thiolsubtilisin in the catalytically relevant ionization state of the active centre by use of a two-protonic-state reactivity probe.
    Brocklehurst K; Malthouse JP
    Biochem J; 1981 Mar; 193(3):819-23. PubMed ID: 6272719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential and nonessential thiols of yeast hexokinase. Reactions with iodoacetate and iodoacetamide.
    Jones JG; Otieno S; Barnard EA; Bhargava AK
    Biochemistry; 1975 Jun; 14(11):2396-403. PubMed ID: 237532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective synthesis of β-alkylated α-amino acids via palladium-catalyzed alkylation of unactivated methylene C(sp3)-H bonds with primary alkyl halides.
    Zhang SY; Li Q; He G; Nack WA; Chen G
    J Am Chem Soc; 2013 Aug; 135(32):12135-41. PubMed ID: 23919290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of [3-N-(11) C-methyl]temozolomide via in situ activation of 3-N-hydroxymethyl temozolomide and alkylation with [(11) C]methyl iodide.
    Eriksson J; Van Kooij R; Schuit RC; Froklage FE; Reijneveld JC; Hendrikse NH; Windhorst AD
    J Labelled Comp Radiopharm; 2015 Mar; 58(3):122-6. PubMed ID: 25693064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Relation between glutathione and cytoplasmic protein sulfhydryl groups in the rat: a rapid procedure for analytical determination].
    Di Simplicio P; Naldini A; Bianco MT
    Boll Soc Ital Biol Sper; 1984 Jun; 60(6):1161-7. PubMed ID: 6477731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH-dependent generation of a cytosolic dithiol which activates hepatic iodothyronine 5'-deiodinase. Demonstration by alkylation with iodoacetamide.
    Das AK; Hummel BC; Walfish PG
    Biochem J; 1986 Dec; 240(2):559-66. PubMed ID: 3814095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptic peptide of thiolsubtilisin. Analytical evidence for the chemical transformation of the essential serine-221 to cysteine-221.
    László P; Mihály S
    Biochim Biophys Acta; 1981 Feb; 667(2):351-4. PubMed ID: 6783118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkylation of cytochrome c by (glutathion-S-yl)-1,4-benzoquinone and iodoacetamide demonstrates compound-dependent site specificity.
    Person MD; Mason DE; Liebler DC; Monks TJ; Lau SS
    Chem Res Toxicol; 2005 Jan; 18(1):41-50. PubMed ID: 15651848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the kinetic properties of native bovine muscle carbonic anhydrase and an activated derivative with modified thiol groups.
    Ren X; Jonsson BH; Millqvist E; Lindskog S
    Biochim Biophys Acta; 1988 Mar; 953(1):79-85. PubMed ID: 3124879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THIOL GROUPS IN DEOXYRIBONUCLEIC ACID NUCLEOTIDYLTRANSFERASE.
    KEIR HM; SHEPHERD JB
    Biochem J; 1965 May; 95(2):483-9. PubMed ID: 14340098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative investigation of the metabolism of methyl bromide and methyl iodide in human erythrocytes.
    Hallier E; Deutschmann S; Reichel C; Bolt HM; Peter H
    Int Arch Occup Environ Health; 1990; 62(3):221-5. PubMed ID: 2347645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.