These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 10099721)
1. Time domain method to identify simultaneously parameters of the windkessel model applied to the pulmonary circulation. Lambermont B; D'Orio V; Gerard P; Kolh P; Detry O; Marcelle R Arch Physiol Biochem; 1998 Jul; 106(3):245-52. PubMed ID: 10099721 [TBL] [Abstract][Full Text] [Related]
2. Comparison between three- and four-element Windkessel models to characterize vascular properties of pulmonary circulation. Lambermont B; Gérard P; Detry O; Kolh P; Potty P; Defraigne JO; D'Orio V; Marcelle R Arch Physiol Biochem; 1997 Dec; 105(7):625-32. PubMed ID: 9693708 [TBL] [Abstract][Full Text] [Related]
3. Analysis of endotoxin effects on the intact pulmonary circulation. Lambermont B; Kolh P; Detry O; Gerard P; Marcelle R; D'Orio V Cardiovasc Res; 1999 Jan; 41(1):275-81. PubMed ID: 10325975 [TBL] [Abstract][Full Text] [Related]
4. Pulmonary arterial compliance in dogs and pigs: the three-element windkessel model revisited. Segers P; Brimioulle S; Stergiopulos N; Westerhof N; Naeije R; Maggiorini M; Verdonck P Am J Physiol; 1999 Aug; 277(2):H725-31. PubMed ID: 10444499 [TBL] [Abstract][Full Text] [Related]
5. Effect of hemodiafiltration on pulmonary hemodynamics in endotoxic shock. Lambermont B; Kolh P; Ghuysen A; Moonen M; Morimont P; Gérard P; Tchana-Sato V; Rorive G; D'Orio V Artif Organs; 2003 Dec; 27(12):1128-33. PubMed ID: 14678428 [TBL] [Abstract][Full Text] [Related]
6. Total arterial inertance as the fourth element of the windkessel model. Stergiopulos N; Westerhof BE; Westerhof N Am J Physiol; 1999 Jan; 276(1):H81-8. PubMed ID: 9887020 [TBL] [Abstract][Full Text] [Related]
7. Effects of inhaled nitric oxide on pulmonary hemodynamics in a porcine model of endotoxin shock. Lambermont B; D'Orio V; Kolh P; Gérard P; Marcelle R Crit Care Med; 1999 Sep; 27(9):1953-7. PubMed ID: 10507624 [TBL] [Abstract][Full Text] [Related]
8. Arterial windkessel parameter estimation: a new time-domain method. Shim Y; Pasipoularides A; Straley CA; Hampton TG; Soto PF; Owen CH; Davis JW; Glower DD Ann Biomed Eng; 1994; 22(1):66-77. PubMed ID: 8060028 [TBL] [Abstract][Full Text] [Related]
9. A non-invasive assessment of cardiopulmonary hemodynamics with MRI in pulmonary hypertension. Bane O; Shah SJ; Cuttica MJ; Collins JD; Selvaraj S; Chatterjee NR; Guetter C; Carr JC; Carroll TJ Magn Reson Imaging; 2015 Dec; 33(10):1224-1235. PubMed ID: 26283577 [TBL] [Abstract][Full Text] [Related]
10. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurements in children with pulmonary hypertension: a new method for evaluating reactivity: in vitro and clinical studies. Weinberg CE; Hertzberg JR; Ivy DD; Kirby KS; Chan KC; Valdes-Cruz L; Shandas R Circulation; 2004 Oct; 110(17):2609-17. PubMed ID: 15492299 [TBL] [Abstract][Full Text] [Related]
11. Noninvasive determination of the pulmonary artery input impedance. Lulić F; Virag Z; Jakopović M; Korade I Med Hypotheses; 2018 Nov; 120():7-13. PubMed ID: 30220345 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive method for determination of arterial compliance using Doppler echocardiography and subclavian pulse tracings. Validation and clinical application of a physiological model of the circulation. Marcus RH; Korcarz C; McCray G; Neumann A; Murphy M; Borow K; Weinert L; Bednarz J; Gretler DD; Spencer KT Circulation; 1994 Jun; 89(6):2688-99. PubMed ID: 8205683 [TBL] [Abstract][Full Text] [Related]
13. Cardiovascular parameters of computed tomographic pulmonary angiography to assess pulmonary vascular resistance in patients with chronic thromboembolic pulmonary hypertension. Liu M; Ma Z; Guo X; Chen X; Yang Y; Wang C Int J Cardiol; 2013 Apr; 164(3):295-300. PubMed ID: 21820745 [TBL] [Abstract][Full Text] [Related]
14. Pressure-flow relationships of the pulmonary circulation during endotoxin infusion in intact dogs. D'Orio V; Fatemi M; Marnette JM; Mendes P; Saad G; Martinez C; Marcelle R Crit Care Med; 1992 Jul; 20(7):1005-13. PubMed ID: 1617970 [TBL] [Abstract][Full Text] [Related]
15. Effect of cardiac output on pulmonary hemodynamics. Grant BJ; Canty JM Respir Physiol; 1989 Jun; 76(3):303-17. PubMed ID: 2749030 [TBL] [Abstract][Full Text] [Related]
16. Estimation of arterial compliance in aortic regurgitation: three methods evaluated in pigs. Slørdahl SA; Piene H; Solbakken JE; Rossvoll O; Samstad SO; Angelsen BA Med Biol Eng Comput; 1990 Jul; 28(4):293-9. PubMed ID: 2246926 [TBL] [Abstract][Full Text] [Related]
17. Complex and frequency-dependent compliance of viscoelastic windkessel resolves contradictions in elastic windkessels. Burattini R; Natalucci S Med Eng Phys; 1998 Oct; 20(7):502-14. PubMed ID: 9832026 [TBL] [Abstract][Full Text] [Related]
18. Pulmonary hydraulic impedance responses to hypoxia and hypercapnia in newborn pigs. Domkowski PW; Cockerham JT; Crescenzo DG; Kot PA; Dyer KL; Wang Y; Messier RH; Analouei AR; Wallace RB; Hopkins RA J Appl Physiol (1985); 1994 Jul; 77(1):386-96. PubMed ID: 7961261 [TBL] [Abstract][Full Text] [Related]
19. Development of systemic arterial mechanical properties from infancy to adulthood interpreted by four-element windkessel models. Burattini R; Di Salvia PO J Appl Physiol (1985); 2007 Jul; 103(1):66-79. PubMed ID: 17303709 [TBL] [Abstract][Full Text] [Related]
20. Some physical properties of the pulmonary arterial bed deduced from pulsatile arterial flow and pressure. Piene H Acta Physiol Scand; 1976 Nov; 98(3):295-306. PubMed ID: 998279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]