These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10102565)

  • 1. Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens.
    Cho SH; Chung YS; Cho SK; Rim YW; Shin JS
    Mol Cells; 1999 Feb; 9(1):14-9. PubMed ID: 10102565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA interference in the moss Physcomitrella patens.
    Bezanilla M; Pan A; Quatrano RS
    Plant Physiol; 2003 Oct; 133(2):470-4. PubMed ID: 14555775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus.
    Sugiura C; Kobayashi Y; Aoki S; Sugita C; Sugita M
    Nucleic Acids Res; 2003 Sep; 31(18):5324-31. PubMed ID: 12954768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes encoding lipid II flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens.
    Utsunomiya H; Saiki N; Kadoguchi H; Fukudome M; Hashimoto S; Ueda M; Takechi K; Takano H
    Plant Mol Biol; 2021 Nov; 107(4-5):405-415. PubMed ID: 33078277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens.
    Liu YC; Vidali L
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21540817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.
    Egener T; Granado J; Guitton MC; Hohe A; Holtorf H; Lucht JM; Rensing SA; Schlink K; Schulte J; Schween G; Zimmermann S; Duwenig E; Rak B; Reski R
    BMC Plant Biol; 2002 Jul; 2():6. PubMed ID: 12123528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens.
    Bierfreund NM; Reski R; Decker EL
    Plant Cell Rep; 2003 Aug; 21(12):1143-52. PubMed ID: 12789498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetracycline-regulated reporter gene expression in the moss Physcomitrella patens.
    Zeidler M; Gatz C; Hartmann E; Hughes J
    Plant Mol Biol; 1996 Jan; 30(1):199-205. PubMed ID: 8616238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens.
    Homi S; Takechi K; Tanidokoro K; Sato H; Takio S; Takano H
    Plant Cell Physiol; 2009 Dec; 50(12):2047-56. PubMed ID: 19892831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The moss Physcomitrella patens, a new model system for functional genomics].
    Dong W; Li W; Guo GX; Zheng GC
    Yi Chuan; 2004 Jul; 26(4):560-6. PubMed ID: 15640062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis.
    Nishiyama T; Hiwatashi Y; Sakakibara I; Kato M; Hasebe M
    DNA Res; 2000 Feb; 7(1):9-17. PubMed ID: 10718194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora palmivora.
    van West P; Reid B; Campbell TA; Sandrock RW; Fry WE; Kamoun S; Gow NA
    FEMS Microbiol Lett; 1999 Sep; 178(1):71-80. PubMed ID: 10483725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens.
    Hohe A; Egener T; Lucht JM; Holtorf H; Reinhard C; Schween G; Reski R
    Curr Genet; 2004 Jan; 44(6):339-47. PubMed ID: 14586556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dynamin-related protein 5B genes are related to plastid division in Physcomitrella patens.
    Sakaguchi E; Takechi K; Sato H; Yamada T; Takio S; Takano H
    Plant Sci; 2011 Jun; 180(6):789-95. PubMed ID: 21497715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics.
    Lang EG; Mueller SJ; Hoernstein SN; Porankiewicz-Asplund J; Vervliet-Scheebaum M; Reski R
    Plant Cell Rep; 2011 Feb; 30(2):205-15. PubMed ID: 20960201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of sorghum transformation parameters using genes for green fluorescent protein and beta-glucuronidase as visual markers.
    Jeoung JM; Krishnaveni S; Muthukrishnan S; Trick HN; Liang GH
    Hereditas; 2002; 137(1):20-8. PubMed ID: 12564629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss.
    Machida M; Takechi K; Sato H; Chung SJ; Kuroiwa H; Takio S; Seki M; Shinozaki K; Fujita T; Hasebe M; Takano H
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6753-8. PubMed ID: 16618924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The moss Physcomitrella patens.
    Cove D
    Annu Rev Genet; 2005; 39():339-58. PubMed ID: 16285864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of delivery of foreign DNA into higher-plant chloroplasts.
    Ye GN; Daniell H; Sanford JC
    Plant Mol Biol; 1990 Dec; 15(6):809-19. PubMed ID: 2103474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic and Transcriptomic Compilation of Chloroplast Ionic Transporters of Physcomitrella patens. Study of NHAD Transporters in Na+ and K+ Homeostasis.
    Ruiz-Lau N; Sáez Á; Lanza M; Benito B
    Plant Cell Physiol; 2017 Dec; 58(12):2166-2178. PubMed ID: 29036645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.