These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10102654)

  • 1. Biological roles of L-carnitine in perinatal metabolism.
    Arenas J; Rubio JC; Martín MA; Campos Y
    Early Hum Dev; 1998 Dec; 53 Suppl():S43-50. PubMed ID: 10102654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. beta-Hydroxybutyrate oxidation is reduced and hepatic balance of ketone bodies and free fatty acids is unaltered in carnitine-depleted, pivalate-treated rats.
    Bianchi PB; Davis AT
    J Nutr; 1996 Nov; 126(11):2867-72. PubMed ID: 8914959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid oxidation and ketogenesis during development.
    Girard J; Duée PH; Ferré P; Pégorier JP; Escriva F; Decaux JF
    Reprod Nutr Dev (1980); 1985; 25(1B):303-19. PubMed ID: 3887527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid and ketone metabolism.
    Bieber LL; Fiol CJ
    Circulation; 1985 Nov; 72(5 Pt 2):IV9-12. PubMed ID: 4053330
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of carnitine in intracellular metabolism.
    Bremer J
    J Clin Chem Clin Biochem; 1990 May; 28(5):297-301. PubMed ID: 2199593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat.
    Bailey E; Lockwood EA
    Enzyme; 1973; 15(1):239-53. PubMed ID: 4593961
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of ketone bodies in perinatal myocardial energy metabolism.
    Bartelds B; van der Leij FR; Kuipers JR
    Biochem Soc Trans; 2001 May; 29(Pt 2):325-30. PubMed ID: 11356176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physiological functions of carnitine and carnitine transporters in the central nervous system].
    Inazu M; Matsumiya T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2008 Jun; 28(3):113-20. PubMed ID: 18646596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of short-chain and branched-chain fatty acids and their carnitine and CoA esters and of various metabolites and agents with branched-chain 2-oxo acid oxidation in rat muscle and liver mitochondria.
    Veerkamp JH; van Moerkerk HT; Wagenmakers AJ
    Int J Biochem; 1985; 17(9):967-74. PubMed ID: 3934010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions.
    Calvani M; Reda E; Arrigoni-Martelli E
    Basic Res Cardiol; 2000 Apr; 95(2):75-83. PubMed ID: 10826498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes of hepatic fatty acid metabolism produced by chronic thioacetamide administration in rats.
    Nozu F; Takeyama N; Tanaka T
    Hepatology; 1992 Jun; 15(6):1099-106. PubMed ID: 1592350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased Cardiac Uptake of Ketone Bodies and Free Fatty Acids in Human Heart Failure and Hypertrophic Left Ventricular Remodeling.
    Voros G; Ector J; Garweg C; Droogne W; Van Cleemput J; Peersman N; Vermeersch P; Janssens S
    Circ Heart Fail; 2018 Dec; 11(12):e004953. PubMed ID: 30562098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic ketone body metabolism in the foetal and neonatal sheep.
    Alexander DP; Andrews WH; Britton HG; Nixon DA
    J Physiol; 1973 Apr; 230(1):22P-23P. PubMed ID: 4702427
    [No Abstract]   [Full Text] [Related]  

  • 15. Carnitine--metabolism and functions.
    Bremer J
    Physiol Rev; 1983 Oct; 63(4):1420-80. PubMed ID: 6361812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between fat synthesis and oxidation in the liver after re-feeding and its regulation by thyroid hormone.
    Holness MJ; French TJ; Schofield PS; Sugden MC
    Biochem J; 1987 Nov; 247(3):621-6. PubMed ID: 3426552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that the development of hepatic fatty acid oxidation at birth in the rat is concomitant with an increased intramitochondrial CoA concentration.
    Escriva F; Ferre P; Robin D; Robin P; Decaux JF; Girard J
    Eur J Biochem; 1986 May; 156(3):603-7. PubMed ID: 3699026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of lactate as an energy substrate for the brain during the early neonatal period.
    Medina JM
    Biol Neonate; 1985; 48(4):237-44. PubMed ID: 3904842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic fuels of the fetus.
    Girard JR
    Isr J Med Sci; 1975 Jun; 11(6):591-600. PubMed ID: 808517
    [No Abstract]   [Full Text] [Related]  

  • 20. Mitochondrial and peroxisomal fatty acid oxidation in elasmobranchs.
    Moyes CD; Buck LT; Hochachka PW
    Am J Physiol; 1990 Mar; 258(3 Pt 2):R756-62. PubMed ID: 2316720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.