These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10102999)

  • 21. The oligosaccharides of the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean. Determination of the structure by a combination of matrix-assisted laser desorption/ionization mass spectrometry and selective enzymic degradation.
    Stahl B; Klabunde T; Witzel H; Krebs B; Steup M; Karas M; Hillenkamp F
    Eur J Biochem; 1994 Mar; 220(2):321-30. PubMed ID: 8125089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Fe(III)Zn(II) form of recombinant human purple acid phosphatase is not activated by proteolysis.
    Funhoff EG; Bollen M; Averill BA
    J Inorg Biochem; 2005 Feb; 99(2):521-9. PubMed ID: 15621285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray absorption spectroscopic studies of the FeZn derivative of uteroferrin.
    Wang X; Randall CR; True AE; Que L
    Biochemistry; 1996 Nov; 35(44):13946-54. PubMed ID: 8909292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of a mammalian purple acid phosphatase.
    Uppenberg J; Lindqvist F; Svensson C; Ek-Rylander B; Andersson G
    J Mol Biol; 1999 Jul; 290(1):201-11. PubMed ID: 10388567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle.
    Schenk G; Elliott TW; Leung E; Carrington LE; Mitić N; Gahan LR; Guddat LW
    BMC Struct Biol; 2008 Jan; 8():6. PubMed ID: 18234116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants.
    Truong NT; Naseri JI; Vogel A; Rompel A; Krebs B
    Arch Biochem Biophys; 2005 Aug; 440(1):38-45. PubMed ID: 16009331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conservation of the active site motif in Aspergillus niger (ficuum) pH 6.0 optimum acid phosphatase and kidney bean purple acid phosphatase.
    Mullaney EJ; Ullah AH
    Biochem Biophys Res Commun; 1998 Feb; 243(2):471-3. PubMed ID: 9480832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure and spectro-structural correlations of Fe(III)Zn(II) biomimetics for purple acid phosphatases: relevance to DNA cleavage and cytotoxic activity.
    Peralta RA; Bortoluzzi AJ; de Souza B; Jovito R; Xavier FR; Couto RA; Casellato A; Nome F; Dick A; Gahan LR; Schenk G; Hanson GR; de Paula FC; Pereira-Maia EC; de P Machado S; Severino PC; Pich C; Bortolotto T; Terenzi H; Castellano EE; Neves A; Riley MJ
    Inorg Chem; 2010 Dec; 49(24):11421-38. PubMed ID: 21080710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification, primary structure, and properties of Euphorbia characias latex purple acid phosphatase.
    Pintus F; Spano D; Corongiu S; Floris G; Medda R
    Biochemistry (Mosc); 2011 Jun; 76(6):694-701. PubMed ID: 21639850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purple acid phosphatase from bovine spleen. Interactions at the active site in relation to the reaction mechanism.
    Dietrich M; Münstermann D; Suerbaum H; Witzel H
    Eur J Biochem; 1991 Jul; 199(1):105-13. PubMed ID: 1648483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.
    Battistuzzi G; Dietrich M; Löcke R; Witzel H
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):593-6. PubMed ID: 9169589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and characterization of the tetranuclear iron(III) complex of a new asymmetric multidentate ligand. A structural model for purple acid phosphatases.
    Boudalis AK; Aston RE; Smith SJ; Mirams RE; Riley MJ; Schenk G; Blackman AG; Hanton LR; Gahan LR
    Dalton Trans; 2007 Nov; (44):5132-9. PubMed ID: 17985020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zn-exchange and Mössbauer studies on the [Fe-Fe] derivatives of the purple acid Fe(III)-Zn(II)-phosphatase from kidney beans.
    Suerbaum H; Körner M; Witzel H; Althaus E; Mosel BD; Müller-Warmuth W
    Eur J Biochem; 1993 May; 214(1):313-21. PubMed ID: 8508801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of the interaction between active site residues and the loop region in mammalian purple acid phosphatases.
    Funhoff EG; Ljusberg J; Wang Y; Andersson G; Averill BA
    Biochemistry; 2001 Sep; 40(38):11614-22. PubMed ID: 11560512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The reaction mechanism of the Ga(III)Zn(II) derivative of uteroferrin and corresponding biomimetics.
    Smith SJ; Casellato A; Hadler KS; Mitić N; Riley MJ; Bortoluzzi AJ; Szpoganicz B; Schenk G; Neves A; Gahan LR
    J Biol Inorg Chem; 2007 Nov; 12(8):1207-20. PubMed ID: 17701232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ga(III) complexes as models for the M(III) site of purple acid phosphatase: ligand effects on the hydrolytic reactivity toward bis(2,4-dinitrophenyl) phosphate.
    Coleman F; Hynes MJ; Erxleben A
    Inorg Chem; 2010 Jul; 49(14):6725-33. PubMed ID: 20565083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation.
    Li D; Zhu H; Liu K; Liu X; Leggewie G; Udvardi M; Wang D
    J Biol Chem; 2002 Aug; 277(31):27772-81. PubMed ID: 12021284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of mammalian-like purple acid phosphatases in a wide range of plants.
    Schenk G; Guddat LW; Ge Y; Carrington LE; Hume DA; Hamilton S; de Jersey J
    Gene; 2000 May; 250(1-2):117-25. PubMed ID: 10854785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsymmetrical Fe(III)Co(II) and Ga(III)Co(II) complexes as chemical hydrolases: biomimetic models for purple acid phosphatases (PAPs).
    Xavier FR; Neves A; Casellato A; Peralta RA; Bortoluzzi AJ; Szpoganicz B; Severino PC; Terenzi H; Tomkowicz Z; Ostrovsky S; Haase W; Ozarowski A; Krzystek J; Telser J; Schenk G; Gahan LR
    Inorg Chem; 2009 Aug; 48(16):7905-21. PubMed ID: 19603814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative theoretical studies of the phosphomonoester hydrolysis mechanism by purple acid phosphatases.
    Retegan M; Milet A; Jamet H
    J Phys Chem A; 2010 Jul; 114(26):7110-6. PubMed ID: 20550096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.