These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10102999)

  • 41. Plant purple acid phosphatases - genes, structures and biological function.
    Olczak M; Morawiecka B; Watorek W
    Acta Biochim Pol; 2003; 50(4):1245-56. PubMed ID: 14740011
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electronic Effect on Bimetallic Catalysts: Cleavage of Phosphodiester Mediated by Fe(III)-Zn(II) Purple Acid Phosphatase Mimics.
    Zhou X; Zhang XP; Li W; Phillips DL; Ke Z; Zhao C
    Inorg Chem; 2020 Sep; 59(17):12065-12074. PubMed ID: 32805999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probing the role of the divalent metal ion in uteroferrin using metal ion replacement and a comparison to isostructural biomimetics.
    Schenk G; Peralta RA; Batista SC; Bortoluzzi AJ; Szpoganicz B; Dick AK; Herrald P; Hanson GR; Szilagyi RK; Riley MJ; Gahan LR; Neves A
    J Biol Inorg Chem; 2008 Jan; 13(1):139-55. PubMed ID: 17938975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The highly exposed loop region in mammalian purple acid phosphatase controls the catalytic activity.
    Funhoff EG; Klaassen CH; Samyn B; Van Beeumen J; Averill BA
    Chembiochem; 2001 May; 2(5):355-63. PubMed ID: 11828464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical studies of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of bacteriophage lambda protein phosphatase.
    Reiter TA; Rusnak F
    Biochemistry; 2004 Jan; 43(3):782-90. PubMed ID: 14730983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of mammalian purple acid phosphatase.
    Guddat LW; McAlpine AS; Hume D; Hamilton S; de Jersey J; Martin JL
    Structure; 1999 Jul; 7(7):757-67. PubMed ID: 10425678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A synthetic pathway for an unsymmetrical N(5)O(2) heptadentate ligand and its heterodinuclear iron(III)zinc(II) complex: a biomimetic model for the purple acid phosphatases.
    Xavier FR; Bortoluzzi AJ; Neves A
    Chem Biodivers; 2012 Sep; 9(9):1794-805. PubMed ID: 22976970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct observation of multiple protonation states in recombinant human purple acid phosphatase.
    Funhoff EG; de Jongh TE; Averill BA
    J Biol Inorg Chem; 2005 Aug; 10(5):550-63. PubMed ID: 16096803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purple acid phosphatase inhibitors as leads for osteoporosis chemotherapeutics.
    Hussein WM; Feder D; Schenk G; Guddat LW; McGeary RP
    Eur J Med Chem; 2018 Sep; 157():462-479. PubMed ID: 30107365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heterologous expression and characterization of recombinant purple acid phosphatase from red kidney bean.
    Vogel A; Börchers T; Marcus K; Meyer HE; Krebs B; Spener F
    Arch Biochem Biophys; 2002 May; 401(2):164-72. PubMed ID: 12054466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs).
    Bernhardt PV; Bosch S; Comba P; Gahan LR; Hanson GR; Mereacre V; Noble CJ; Powell AK; Schenk G; Wadepohl H
    Inorg Chem; 2015 Aug; 54(15):7249-63. PubMed ID: 26196255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase.
    Flanagan JU; Cassady AI; Schenk G; Guddat LW; Hume DA
    Gene; 2006 Aug; 377():12-20. PubMed ID: 16793224
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural and catalytic characterization of a heterovalent Mn(II)Mn(III) complex that mimics purple acid phosphatases.
    Smith SJ; Riley MJ; Noble CJ; Hanson GR; Stranger R; Jayaratne V; Cavigliasso G; Schenk G; Gahan LR
    Inorg Chem; 2009 Nov; 48(21):10036-48. PubMed ID: 19852517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new heterobinuclear FeIIICuII complex with a single terminal FeIII-O(phenolate) bond. Relevance to purple acid phosphatases and nucleases.
    Lanznaster M; Neves A; Bortoluzzi AJ; Aires VV; Szpoganicz B; Terenzi H; Severino PC; Fuller JM; Drew SC; Gahan LR; Hanson GR; Riley MJ; Schenk G
    J Biol Inorg Chem; 2005 Jun; 10(4):319-32. PubMed ID: 15843985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unique structural features of red kidney bean purple acid phosphatase.
    Cashikar AG; Rao MN
    Indian J Biochem Biophys; 1995 Jun; 32(3):130-6. PubMed ID: 7590853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The activity of oxidized bovine spleen purple acid phosphatase is due to an Fe(III)Zn(II) 'impurity'.
    Merkx M; Averill BA
    Biochemistry; 1998 Aug; 37(32):11223-31. PubMed ID: 9698368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a mu-(hydr)oxo bridged di-iron center.
    Lindqvist Y; Johansson E; Kaija H; Vihko P; Schneider G
    J Mol Biol; 1999 Aug; 291(1):135-47. PubMed ID: 10438611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Purification and characterization of purple acid phosphatase PAP1 from dry powder of sweet potato.
    Kusudo T; Sakaki T; Inouye K
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1609-11. PubMed ID: 12913313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-wide analysis of purple acid phosphatase (PAP) family proteins in Jatropha curcas L.
    Venkidasamy B; Selvaraj D; Ramalingam S
    Int J Biol Macromol; 2019 Feb; 123():648-656. PubMed ID: 30414420
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2.
    Limphong P; Crowder MW; Bennett B; Makaroff CA
    Biochem J; 2009 Jan; 417(1):323-30. PubMed ID: 18782082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.