These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10102999)

  • 61. Asymmetric mono- and dinuclear Ga
    Bosch S; Comba P; Gahan LR; Schenk G
    J Inorg Biochem; 2016 Sep; 162():343-355. PubMed ID: 26874376
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Monoesterase activity of a purple acid phosphatase mimic with a cyclam platform.
    Comba P; Gahan LR; Hanson GR; Mereacre V; Noble CJ; Powell AK; Prisecaru I; Schenk G; Zajaczkowski-Fischer M
    Chemistry; 2012 Feb; 18(6):1700-10. PubMed ID: 22234833
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rosmarinic acid determination using biomimetic sensor based on purple acid phosphatase mimetic.
    Santhiago M; Peralta RA; Neves A; Micke GA; Vieira IC
    Anal Chim Acta; 2008 Apr; 613(1):91-7. PubMed ID: 18374706
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Substrate positioning by His92 is important in catalysis by purple acid phosphatase.
    Funhoff EG; Wang Y; Andersson G; Averill BA
    FEBS J; 2005 Jun; 272(12):2968-77. PubMed ID: 15955057
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spectroscopic and kinetics studies of a high-salt-stabilized form of the purple acid phosphatase from bovine spleen.
    Vincent JB; Crowder MW; Averill BA
    Biochemistry; 1991 Mar; 30(12):3025-34. PubMed ID: 1848783
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Second-coordination-sphere effects increase the catalytic efficiency of an extended model for Fe(III)M(II) purple acid phosphatases.
    de Souza B; Kreft GL; Bortolotto T; Terenzi H; Bortoluzzi AJ; Castellano EE; Peralta RA; Domingos JB; Neves A
    Inorg Chem; 2013 Apr; 52(7):3594-6. PubMed ID: 23496379
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of purple acid phosphatase inhibitors by fragment-based screening: promising new leads for osteoporosis therapeutics.
    Feder D; Hussein WM; Clayton DJ; Kan MW; Schenk G; McGeary RP; Guddat LW
    Chem Biol Drug Des; 2012 Nov; 80(5):665-74. PubMed ID: 22943065
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases.
    Valizadeh M; Schenk G; Nash K; Oddie GW; Guddat LW; Hume DA; de Jersey J; Burke TR; Hamilton S
    Arch Biochem Biophys; 2004 Apr; 424(2):154-62. PubMed ID: 15047187
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The divalent metal ion in the active site of uteroferrin modulates substrate binding and catalysis.
    Mitić N; Hadler KS; Gahan LR; Hengge AC; Schenk G
    J Am Chem Soc; 2010 May; 132(20):7049-54. PubMed ID: 20433174
    [TBL] [Abstract][Full Text] [Related]  

  • 70. New insights into the mechanism of purple acid phosphatase through (1)H NMR spectroscopy of the recombinant human enzyme.
    Dikiy A; Funhoff EG; Averill BA; Ciurli S
    J Am Chem Soc; 2002 Nov; 124(47):13974-5. PubMed ID: 12440878
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Purple acid phosphatase-like sequences in prokaryotic genomes and the characterization of an atypical purple alkaline phosphatase from Burkholderia cenocepacia J2315.
    Yeung SL; Cheng C; Lui TK; Tsang JS; Chan WT; Lim BL
    Gene; 2009 Jul; 440(1-2):1-8. PubMed ID: 19376213
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phosphate ester cleavage promoted by a tetrameric iron(III) complex.
    Kantacha A; Buchholz R; Smith SJ; Schenk G; Gahan LR
    J Biol Inorg Chem; 2011 Jan; 16(1):25-32. PubMed ID: 20798967
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydrolysis of phosphodiesters by diiron complexes: design of nonequivalent iron sites in purple acid phosphatase models.
    Verge F; Lebrun C; Fontecave M; Ménage S
    Inorg Chem; 2003 Jan; 42(2):499-507. PubMed ID: 12693232
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of metal-binding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE.
    Colpas GJ; Brayman TG; Ming LJ; Hausinger RP
    Biochemistry; 1999 Mar; 38(13):4078-88. PubMed ID: 10194322
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Isozymes of Ipomoea batatas catechol oxidase differ in catalase-like activity.
    Gerdemann C; Eicken C; Magrini A; Meyer HE; Rompel A; Spener F; Krebs B
    Biochim Biophys Acta; 2001 Jul; 1548(1):94-105. PubMed ID: 11451442
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The glycosylphosphatidylinositol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase.
    Nakazato H; Okamoto T; Nishikoori M; Washio K; Morita N; Haraguchi K; Thompson GA; Okuyama H
    Plant Physiol; 1998 Nov; 118(3):1015-20. PubMed ID: 9808746
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evidence for a spin-coupled binuclear iron unit at the active site of the purple acid phosphatase from beef spleen.
    Davis JC; Averill BA
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4623-7. PubMed ID: 6289309
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electron paramagnetic resonance studies on the high-salt form of bovine spleen purple acid phosphatase.
    Crowder MW; Vincent JB; Averill BA
    Biochemistry; 1992 Oct; 31(40):9603-8. PubMed ID: 1327121
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An arsenate reductase homologue possessing phosphatase activity from sweet potato (Ipomoea batatas [L.] Lam): kinetic studies and characterization.
    Chan YH; Lin CY; Pai SH; Huang JK; Lin CT
    J Agric Food Chem; 2011 Apr; 59(7):3087-91. PubMed ID: 21388125
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Detection and quantification of metals in organic materials by laser-SNMS with nonresonant multiphoton ionization.
    Schnieders A; Benninghoven A
    Anal Chem; 2000 Sep; 72(18):4289-95. PubMed ID: 11008762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.