These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10103103)

  • 21. N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor antagonists differentially suppress dorsal horn neuron responses to mechanical stimuli in rats with peripheral nerve injury.
    Leem JW; Choi EJ; Park ES; Paik KS
    Neurosci Lett; 1996 Jun; 211(1):37-40. PubMed ID: 8809842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional role of NMDA autoreceptors in olfactory mitral cells.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2000 Jul; 84(1):39-50. PubMed ID: 10899181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-affinity kainate receptors and long-lasting depression of NMDA-receptor-mediated currents in rat superficial dorsal horn.
    Sequeira S; Näsström J
    J Neurophysiol; 1998 Aug; 80(2):895-902. PubMed ID: 9705476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMDA-Receptor-dependent synaptic activation of voltage-dependent calcium channels in basolateral amygdala.
    Calton JL; Kang MH; Wilson WA; Moore SD
    J Neurophysiol; 2000 Feb; 83(2):685-92. PubMed ID: 10669484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential roles of ionotropic glutamate receptors in canine medullary inspiratory neurons of the ventral respiratory group.
    Krolo M; Stuth EA; Tonkovic-Capin M; Dogas Z; Hopp FA; McCrimmon DR; Zuperku EJ
    J Neurophysiol; 1999 Jul; 82(1):60-8. PubMed ID: 10400935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serotonergic modulation of the responses to excitatory amino acids of rat dorsal horn neurons in vitro: implications for somatosensory transmission.
    Lopez-Garcia JA
    Eur J Neurosci; 1998 Apr; 10(4):1341-9. PubMed ID: 9749788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses.
    Roberts EB; Meredith MA; Ramoa AS
    J Neurophysiol; 1998 Sep; 80(3):1021-32. PubMed ID: 9744918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blockade of NMDA receptors in the nucleus accumbens elicits spontaneous tail-flicks in rats.
    Millan MJ; Audinot V; Honoré P; Bervoets K; Veiga S; Brocco M
    Eur J Pharmacol; 2000 Jan; 388(1):37-47. PubMed ID: 10657545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of glutamate receptors in transmission of vagal cardiac input to neurones in the nucleus tractus solitarii in dogs.
    Seagard JL; Dean C; Hopp FA
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):243-53. PubMed ID: 10517815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine.
    Arvanov VL; Wang RY
    J Pharmacol Exp Ther; 1999 May; 289(2):1000-6. PubMed ID: 10215680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord.
    Radhakrishnan V; Henry JL
    Neuroscience; 1993 Jul; 55(2):531-44. PubMed ID: 7690912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons.
    Razak KA; Pallas SL
    Vis Neurosci; 2006; 23(5):741-8. PubMed ID: 17020630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamatergic neurotransmission mediated by NMDA receptors in the inferior colliculus can modulate haloperidol-induced catalepsy.
    Melo LL; Santos P; Medeiros P; Mello RO; Ferrari EA; Brandão ML; Maisonnette SS; Francisco A; Coimbra NC
    Brain Res; 2010 Aug; 1349():41-7. PubMed ID: 20558148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fast synaptic potential mediated by NMDA and non-NMDA receptors.
    Wolszon LR; Pereda AE; Faber DS
    J Neurophysiol; 1997 Nov; 78(5):2693-706. PubMed ID: 9356419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity.
    Li R; Huang FS; Abbas AK; Wigström H
    BMC Neurosci; 2007 Jul; 8():55. PubMed ID: 17655746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway.
    Yan X; Zhao B; Butt CM; Debski EA
    Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD; Cline HT
    J Neurophysiol; 2007 Apr; 97(4):2949-57. PubMed ID: 17267761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison between the in vivo and in vitro activity of five potent and competitive NMDA antagonists.
    Lodge D; Davies SN; Jones MG; Millar J; Manallack DT; Ornstein PL; Verberne AJ; Young N; Beart PM
    Br J Pharmacol; 1988 Nov; 95(3):957-65. PubMed ID: 2905186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of two novel N-methyl-D-aspartate antagonists: EAA-090 (2-[8,9-dioxo-2,6-diazabicyclo [5.2.0]non-1(7)-en2-yl]ethylphosphonic acid) and EAB-318 (R-alpha-amino-5-chloro-1-(phosphonomethyl)-1H-benzimidazole-2-propanoic acid hydrochloride).
    Sun L; Chiu D; Kowal D; Simon R; Smeyne M; Zukin RS; Olney J; Baudy R; Lin S
    J Pharmacol Exp Ther; 2004 Aug; 310(2):563-70. PubMed ID: 15075380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lateral hypothalamic NMDA receptors and glutamate as physiological mediators of eating and weight control.
    Stanley BG; Willett VL; Donias HW; Dee MG; Duva MA
    Am J Physiol; 1996 Feb; 270(2 Pt 2):R443-9. PubMed ID: 8779877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.