These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1010848)

  • 1. Flavodoxin: an allosteric inhibitor of AMP nucleosidase from Azotobacter vinelandii.
    Yoshino M; Murakami K; Tsushima K
    J Biochem; 1976 Oct; 80(4):839-43. PubMed ID: 1010848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties of allosteric adenosine monophosphate nucleosidase from Azotobacter vinelandii.
    Schramm VL
    J Biol Chem; 1974 Mar; 249(6):1729-36. PubMed ID: 4361821
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of adenosine monophosphate levels as a function of adenosine triphosphate and inorganic phosphate. A proposed metabolic role for adenosine monophosphate nucleosidase from Azotobacter vinelandii.
    Schramm VL; Leung H
    J Biol Chem; 1973 Dec; 248(23):8313-5. PubMed ID: 4752957
    [No Abstract]   [Full Text] [Related]  

  • 4. AMP nucleosidase from Azotobacter vinelandii. 3. Kinetics of allosteric interactions.
    Yoshino M; Ogasawara N
    J Biochem; 1972 Aug; 72(2):223-33. PubMed ID: 4345428
    [No Abstract]   [Full Text] [Related]  

  • 5. Interaction of Mn2+ and MnATP2- with the allosteric sites of AMP nucleosidase.
    Schramm VL; Reed GH
    J Biol Chem; 1980 Jun; 255(12):5796-801. PubMed ID: 6247346
    [No Abstract]   [Full Text] [Related]  

  • 6. Ion-dependent activation of AMP nucleosidase from Azotobacter vinelandii.
    Murakami K; Yoshino M
    Biochim Biophys Acta; 1980; 613(1):153-9. PubMed ID: 7378416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of substantial separation of the catalytic and allosteric sites of AMP nucleosidase.
    DeWolf WE; Markham GD; Schramm VL
    J Biol Chem; 1980 Sep; 255(17):8210-5. PubMed ID: 6251048
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of initial velocity and binding data for allosteric adenosine monophosphate nucleosidase.
    Schramm VL
    J Biol Chem; 1976 Jun; 251(11):3417-24. PubMed ID: 931993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii.
    Vervoort J; Müller F; Mayhew SG; van den Berg WA; Moonen CT; Bacher A
    Biochemistry; 1986 Nov; 25(22):6789-99. PubMed ID: 3801391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pathway of adenylate catabolism in Azotobacter vinelandii. Evidence for adenosine monophosphate nucleosidase as the regulatory enzyme.
    Schramm VL; Lazorik FC
    J Biol Chem; 1975 Mar; 250(5):1801-8. PubMed ID: 1167548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamines as activators of AMP nucleosidase from Azotobacter vinelandii.
    Yoshino M; Murakami K; Tsushima K
    Experientia; 1979 May; 35(5):578-9. PubMed ID: 446646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of adenosine monophosphate nucleosidase inactivation by phosphate and protection by substrate and allosteric activator.
    Schramm VL; Fullin FA
    J Biol Chem; 1978 Apr; 253(7):2161-7. PubMed ID: 632260
    [No Abstract]   [Full Text] [Related]  

  • 13. Dissociation and association of AMP nucleosidase from Azotobacter vinelandii.
    Yoshino M; Ogasawara N; Suzuki N; Kotake Y
    Biochim Biophys Acta; 1968 Aug; 167(1):216-8. PubMed ID: 5686297
    [No Abstract]   [Full Text] [Related]  

  • 14. Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects.
    Parkin DW; Mentch F; Banks GA; Horenstein BA; Schramm VL
    Biochemistry; 1991 May; 30(18):4586-94. PubMed ID: 2021651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified flavodoxin with altered redox potentials is less efficient in electron transfer to nitrogenase.
    Hofstetter W; DerVartanian DV
    Biochem Biophys Res Commun; 1985 Apr; 128(2):643-9. PubMed ID: 3857914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermodynamics of flavin binding to the apoflavodoxin from Azotobacter vinelandii.
    Carlson R; Langerman N
    Arch Biochem Biophys; 1984 Mar; 229(2):440-7. PubMed ID: 6703704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of monovalent cations on AMP nucleosidase from Azotobacter vinelandii.
    Yoshino M; Murakami K; Tsushima K
    Biochim Biophys Acta; 1979 Sep; 570(1):118-23. PubMed ID: 486499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of allosteric activation on the primary and secondary kinetic isotope effects for three AMP nucleosidases.
    Parkin DW; Schramm VL
    J Biol Chem; 1984 Aug; 259(15):9418-25. PubMed ID: 6378909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of AMP nucleosidase in Azotobacter vinelandii.
    Yoshino M; Ogasawara N; Suzuki N; Kotake Y
    Biochim Biophys Acta; 1967; 146(2):620-2. PubMed ID: 6066310
    [No Abstract]   [Full Text] [Related]  

  • 20. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.