These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 101140)

  • 1. Microbial catabolism of vanillate: decarboxylation to guaiacol.
    Crawford RL; Olson PP
    Appl Environ Microbiol; 1978 Oct; 36(4):539-43. PubMed ID: 101140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol.
    Pometto AL; Sutherland JB; Crawford DL
    Can J Microbiol; 1981 Jun; 27(6):636-8. PubMed ID: 7260738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7.
    Chow KT; Pope MK; Davies J
    Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2393-2403. PubMed ID: 10517592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples.
    Alvarez-Rodríguez ML; Belloch C; Villa M; Uruburu F; Larriba G; Coque JJ
    FEMS Microbiol Lett; 2003 Mar; 220(1):49-55. PubMed ID: 12644227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and substrate range of Streptomyces vanillate demethylase.
    Nishimura M; Nishimura Y; Abe C; Kohhata M
    Biol Pharm Bull; 2014; 37(9):1564-8. PubMed ID: 25008238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursors and metabolic pathway for guaiacol production by Alicyclobacillus acidoterrestris.
    Cai R; Yuan Y; Wang Z; Guo C; Liu B; Liu L; Wang Y; Yue T
    Int J Food Microbiol; 2015 Dec; 214():48-53. PubMed ID: 26241489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra.
    Huang Z; Dostal L; Rosazza JP
    J Biol Chem; 1993 Nov; 268(32):23954-8. PubMed ID: 8226936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanillate metabolism in Corynebacterium glutamicum.
    Merkens H; Beckers G; Wirtz A; Burkovski A
    Curr Microbiol; 2005 Jul; 51(1):59-65. PubMed ID: 15971090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis.
    Lupa B; Lyon D; Shaw LN; Sieprawska-Lupa M; Wiegel J
    Can J Microbiol; 2008 Jan; 54(1):75-81. PubMed ID: 18388975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decarboxylation of ferulic acid to 4-vinyl guaiacol by Streptomyces setonii.
    Max B; Carballo J; Cortés S; Domínguez JM
    Appl Biochem Biotechnol; 2012 Jan; 166(2):289-99. PubMed ID: 22081324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptomyces tunisiensis DSM 42037 mediated bioconversion of ferulic acid released from barley bran.
    Slama N; Mankai H; Limam F
    World J Microbiol Biotechnol; 2021 Mar; 37(4):70. PubMed ID: 33748917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains.
    Sharma UK; Sharma N; Salwan R; Kumar R; Kasana RC; Sinha AK
    J Sci Food Agric; 2012 Feb; 92(3):610-7. PubMed ID: 21919002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.
    Ito T; Konno M; Shimura Y; Watanabe S; Takahashi H; Hashizume K
    J Agric Food Chem; 2016 Jun; 64(22):4599-605. PubMed ID: 27181257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter.
    Segura A; Bünz PV; D'Argenio DA; Ornston LN
    J Bacteriol; 1999 Jun; 181(11):3494-504. PubMed ID: 10348863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of 3-hydroxybenzoate by bacteria of the genus Bacillus.
    Crawford RL
    Appl Microbiol; 1975 Sep; 30(3):439-44. PubMed ID: 810087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic and Anaerobic Catabolism of Vanillic Acid and Some Other Methoxy-Aromatic Compounds by Pseudomonas sp. Strain PN-1.
    Taylor BF
    Appl Environ Microbiol; 1983 Dec; 46(6):1286-92. PubMed ID: 16346441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic vanillate degradation and C1 compound metabolism in Bradyrhizobium japonicum.
    Sudtachat N; Ito N; Itakura M; Masuda S; Eda S; Mitsui H; Kawaharada Y; Minamisawa K
    Appl Environ Microbiol; 2009 Aug; 75(15):5012-7. PubMed ID: 19502448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative decarboxylation of vanillic acid by Sporotrichum pulverulentum.
    Buswell JA; Ander P; Pettersson B; Eriksson KE
    FEBS Lett; 1979 Jul; 103(1):98-101. PubMed ID: 38141
    [No Abstract]   [Full Text] [Related]  

  • 19. Enzymatic release of halogens or methanol from some substituted protocatechuic acids.
    Kersten PJ; Chapman PJ; Dagley S
    J Bacteriol; 1985 May; 162(2):693-7. PubMed ID: 3988709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolism of protocatechuate by Bacillus macerans.
    Crawford RL; Bromley JW; Perkins-Olson PE
    Appl Environ Microbiol; 1979 Mar; 37(3):614-8. PubMed ID: 453834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.