BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1011453)

  • 1. [Use of glucose-6-phosphate dehydrogenase and transketolase for characterization of pathologic processes in the myocardium in rheumatism].
    Astakhova TA; Kaĭnova AS; Sigidin IaA
    Kardiologiia; 1976 Nov; 16(11):133-6. PubMed ID: 1011453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Activity of the enzymes of pentose cycle in children with rheumatic heart disease].
    Karpocheva MP; Astakhova TA
    Vopr Revm; 1976; (2):70-1. PubMed ID: 960677
    [No Abstract]   [Full Text] [Related]  

  • 3. [Thiamine deficiency in chronic alcoholism. The effect of thiamine treatment on the erythrocyte transketolase activity and the thiamine pyrophosphate effect].
    Kristensen M; Hanel H; Graudal N; Torp-Pedersen K; Thomsen AC
    Ugeskr Laeger; 1985 Jun; 147(26):2082-5. PubMed ID: 4049549
    [No Abstract]   [Full Text] [Related]  

  • 4. [Activity of enzymes of the pentosephosphate cycle in patients with rheumatism].
    Astakhova TA; Kainova AS
    Ter Arkh; 1973 Jan; 45(1):41-5. PubMed ID: 4770019
    [No Abstract]   [Full Text] [Related]  

  • 5. Assessment of the thiamine nutritional status. An evaluation of erythrocyte transketolase activity, the stimulated erythrocyte transketolase activity, and the thiamine pyrophosphate effect.
    Graudal N; Torp-Pedersen K; Hanel H; Kristensen M; Thomsen AC; Nørgård G
    Int J Vitam Nutr Res; 1985; 55(4):399-403. PubMed ID: 4086209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocyte transketolase activity in uremia.
    Kuriyama M; Mizuma A; Yokomine R; Igata A; Otuji Y
    Clin Chim Acta; 1980 Dec; 108(2):169-77. PubMed ID: 6256098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte transketolase activity in the Wernicke-Korsakoff syndrome.
    Leigh D; McBurney A; McIlwain H
    Br J Psychiatry; 1981 Aug; 139():153-6. PubMed ID: 7306754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in the activity of glucose-6-phosphate dehydrogenase, transketolase and glucose-6-phosphatase in the erythrocytes and serum of patients with different forms of retarded growth].
    Smirnov AG; Gulaia NM
    Probl Endokrinol (Mosk); 1971; 17(6):38-41. PubMed ID: 4337019
    [No Abstract]   [Full Text] [Related]  

  • 9. Biochemical assessment of thiamine status in adult Australians.
    Wood B; Penington DG
    Int J Vitam Nutr Res; 1973; 43(1):12-9. PubMed ID: 4696817
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the effect of low-molecule uremic toxins on the activity of glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) and transketolase (E.C.2.2.1.1) in human red blood cells.
    Kopczyński Z; Dryl-Rydzyńska T
    Acta Physiol Pol; 1988; 39(4):269-75. PubMed ID: 3252690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Erythrocyte transketolase].
    Yasuda K; Hiraoka M
    Nihon Rinsho; 2004 Dec; 62 Suppl 12():823-6. PubMed ID: 15658460
    [No Abstract]   [Full Text] [Related]  

  • 12. [Glucose-6-phosphate dehydrogenase and transketolase activity in the blood of neurological oncologic patients preoperatively and in the dynamics of the postoperative period].
    Brodskaia NI; Iansken LI; Kudriavtseva GV
    Vopr Med Khim; 1979; 25(6):687-90. PubMed ID: 516529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in erythrocyte transketolase activity and the thiamine pyrophosphate effect during storage of blood.
    Puxty JA; Haskew AE; Ratcliffe JG; McMurray J
    Ann Clin Biochem; 1985 Jul; 22 ( Pt 4)():423-7. PubMed ID: 4037670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the thiamin pyrophosphate effect and the saturation status of the transketolase with its coenzyme in human erythrocytes.
    Takeuchi T; Jung EH; Nishino K; Itokawa Y
    Int J Vitam Nutr Res; 1990; 60(2):112-20. PubMed ID: 2210959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of transketolase assay and transketolase and lactate dehydrogenase activity levels in whole blood and red cell hemolysates and in leukocytes.
    Ali M; Gubler CJ; Al Saleh J; Abu Farsak F
    Comp Biochem Physiol B; 1987; 87(4):833-5. PubMed ID: 3665430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Activity of enzymes of pentosephosphate pathway in the erythrocytes, myocardium and intercostal muscle of patients with mitral valve stenosis].
    Kukhta VK
    Vopr Med Khim; 1976; 22(3):325-8. PubMed ID: 1025894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transketolase activity in rabbit myocardium and erythrocytes in health and in allergic heart diseases].
    Grosdova MD; Astakhova TA
    Vopr Med Khim; 1975; 21(4):363-6. PubMed ID: 1216755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the nature of thiamine pyrophosphate binding and dependency on divalent cations of transketolase from human erythrocytes.
    Jung EH; Takeuchi T; Nishino K; Itokawa Y
    Int J Biochem; 1988; 20(11):1255-9. PubMed ID: 3248678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of erythrocyte transketolase activity with thiamine and thiamine phosphate ester levels in chronic alcoholic patients.
    Herve C; Beyne P; Lettéron P; Delacoux E
    Clin Chim Acta; 1995 Jan; 234(1-2):91-100. PubMed ID: 7758226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Glucose-6-phosphate dehydrogenase activity in patients with chronic inflammatory lung diseases].
    Korzhov VI; Serdiuk TM
    Vrach Delo; 1991 May; (5):47-9. PubMed ID: 1866914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.