These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 1011532)
1. [Mechanism of regulation of themitochondrial creatine phosphokinase reaction by magnewium ions]. Saks VA; Gukovskiĭ DE; Lipina NV; Smirnov VN; Chazov EI Kardiologiia; 1976 Sep; 16(9):72-9. PubMed ID: 1011532 [TBL] [Abstract][Full Text] [Related]
2. [Study of the role of mitochondrial creatine phosphokinase isoenzyme in the process of energy transport in cardiac cells]. Saks VA; Liulina VN; Chernousova GB; Voronkov IuI; Smirnov VN Kardiologiia; 1975 Sep; 15(9):103-11. PubMed ID: 1230512 [TBL] [Abstract][Full Text] [Related]
3. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions. Saks VA; Chernousova GB; Gukovsky DE; Smirnov VN; Chazov EI Eur J Biochem; 1975 Sep; 57(1):273-90. PubMed ID: 126157 [TBL] [Abstract][Full Text] [Related]
4. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils]. Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648 [TBL] [Abstract][Full Text] [Related]
5. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture. Seraydarian MW; Artaza L; Abbott BC J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045 [No Abstract] [Full Text] [Related]
6. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria. Yang WC; Geiger PJ; Besman SP Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451 [No Abstract] [Full Text] [Related]
7. Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP ADP translocase: kinetic evidence. Saks VA; Lipina NV; Smirnov VN; Chazov EI Arch Biochem Biophys; 1976 Mar; 173(1):34-41. PubMed ID: 1259440 [No Abstract] [Full Text] [Related]
8. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria. Aliev MK; Saks VA Biochim Biophys Acta; 1993 Jul; 1143(3):291-300. PubMed ID: 8329438 [TBL] [Abstract][Full Text] [Related]
9. Dependence of mitochondrial ATP synthesis on the nuclear magnetic moment of magnesium ions. Buchachenko AL; Kuznetsov DA; Arkhangel'sky SE; Orlova MA; Markaryan AA; Berdieva AG; Khasigov PZ Dokl Biochem Biophys; 2004; 396():197-9. PubMed ID: 15378926 [No Abstract] [Full Text] [Related]
10. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study. Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696 [TBL] [Abstract][Full Text] [Related]
11. [Comparative studies on the influence of creatine phosphate and creatinine phosphate on respiration and oxidative phosphorylation of isolated heart and liver mitochondria]. Noack E Arzneimittelforschung; 1973 Aug; 23(8):1037-41. PubMed ID: 4801023 [No Abstract] [Full Text] [Related]
12. Computerized calculation of in vitro generation of ATP and creatine phosphate induced by respiration in human muscle mitochondria. Fischer JC; Ruitenbeek W; Stadhouders AM; Trijbels JM; Sengers RC; Janssen AJ; Veerkamp JH; Bindels RJ Comput Biol Med; 1985; 15(5):269-77. PubMed ID: 3840068 [TBL] [Abstract][Full Text] [Related]
13. KINETIC STUDIES OF THE REVERSE REACTION CATALYSED BY ADENOSINE TRIPHOSPHATE-CREATINE PHOSPHOTRANSFERASE. THE INHIBITION BY MAGNESIUM IONS AND ADENOSINE DIPHOSPHATE. MORRISON JF; O'SULLIVAN WJ Biochem J; 1965 Jan; 94(1):221-35. PubMed ID: 14342234 [TBL] [Abstract][Full Text] [Related]
14. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle]. Saks VA; Seppet EK; Liulina NV Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086 [TBL] [Abstract][Full Text] [Related]
15. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Saks VA; Kongas O; Vendelin M; Kay L Acta Physiol Scand; 2000 Apr; 168(4):635-41. PubMed ID: 10759600 [TBL] [Abstract][Full Text] [Related]
16. Decreased mitochondrial creatine kinase activity in dystrophic chicken breast muscle alters creatine-linked respiratory coupling. Bennett VD; Hall N; DeLuca M; Suelter CH Arch Biochem Biophys; 1985 Jul; 240(1):380-91. PubMed ID: 4015110 [TBL] [Abstract][Full Text] [Related]
17. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Jacobus WE Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084 [TBL] [Abstract][Full Text] [Related]
18. Study of energy transport mechanism in myocardial cells. Saks VA; Chernousova GB; Voronkov II; Smirnov VN; Chazov EI Circ Res; 1974 Sep; 35 Suppl 3():138-49. PubMed ID: 4415965 [No Abstract] [Full Text] [Related]
19. [Creatine kinase system and muscle energy metabolism]. Chetverikova EP Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505 [No Abstract] [Full Text] [Related]
20. [Specific limitations for intracellular diffusion of ADP in cardiomyocytes]. Belikova IuO; Kuznetsov AV; Saks VA Biokhimiia; 1990 Nov; 55(11):1944-57. PubMed ID: 2085614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]