These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 101245)

  • 41. The effect of dietary lipids on the thermotropic behaviour of rat liver and heart mitochondrial membrane lipids.
    McMurchie EJ; Abeywardena MY; Charnock JS; Gibson RA
    Biochim Biophys Acta; 1983 Sep; 734(1):114-24. PubMed ID: 6615826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation.
    Beranová J; Jemioła-Rzemińska M; Elhottová D; Strzałka K; Konopásek I
    Biochim Biophys Acta; 2008 Feb; 1778(2):445-53. PubMed ID: 18154726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of independent variations in fatty acid structure and chain length on lipid polar headgroup composition in Acholeplasma laidlawii B membranes: regulation of lamellar/nonlamellar phase propensity.
    Yue AW; Wong BC; Rieder J; Lewis RN; Mannock DA; McElhaney RN
    Biochemistry; 2003 Feb; 42(5):1309-17. PubMed ID: 12564934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles. Effect of lipid phase transitions.
    Davoust J; Bienvenue A; Fellmann P; Devaux PF
    Biochim Biophys Acta; 1980 Feb; 596(1):28-42. PubMed ID: 6243483
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of glucose on the biosynthesis of the membranes of Bacillus.
    Kusaka I
    Biochim Biophys Acta; 1974 Apr; 345(1):62-73. PubMed ID: 4209038
    [No Abstract]   [Full Text] [Related]  

  • 46. Interaction of alpha-tocopherol with fatty acids in membranes and ethanol.
    Stillwell W; Ehringer W; Wassall SR
    Biochim Biophys Acta; 1992 Apr; 1105(2):237-44. PubMed ID: 1586661
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Omega-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes.
    Oshima M; Ariga T
    J Biol Chem; 1975 Sep; 250(17):6963-8. PubMed ID: 1158890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lipid domains in biological membranes: their structural and functional perturbation by free fatty acids and the regulation of receptor mobility. Co-presidential address.
    Karnovsky MJ
    Am J Pathol; 1979 Nov; 97(2):212-21. PubMed ID: 525671
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large decreases in membrane phosphatidylethanolamine and diphosphatidylglycerol upon mutation to duramycin resistance do not change the protonophore resistance of Bacillus subtilis.
    Dunkley EA; Clejan S; Guffanti AA; Krulwich TA
    Biochim Biophys Acta; 1988 Aug; 943(1):13-8. PubMed ID: 3135835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fatty-acid biosynthesis in a branched-chain alpha-keto acid dehydrogenase mutant of Streptomyces avermitilis.
    Cropp TA; Smogowicz AA; Hafner EW; Denoya CD; McArthur HA; Reynolds KA
    Can J Microbiol; 2000 Jun; 46(6):506-14. PubMed ID: 10913971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact on lipid membrane organization by free branched-chain fatty acids.
    Lindström F; Thurnhofer S; Vetter W; Gröbner G
    Phys Chem Chem Phys; 2006 Nov; 8(41):4792-7. PubMed ID: 17043723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of free hydroxylated and methyl-branched fatty acids on the organization of lipid membranes.
    Jenske R; Lindström F; Gröbner G; Vetter W
    Chem Phys Lipids; 2008 Jul; 154(1):26-32. PubMed ID: 18407834
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes.
    Jones SL; Drouin P; Wilkinson BJ; II Morse PD
    Arch Microbiol; 2002 Mar; 177(3):217-22. PubMed ID: 11907677
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Growth-phase dependence of bacterial membrane lipid profile and labeling for in-cell solid-state NMR applications.
    Laydevant F; Mahabadi M; Llido P; Bourgouin JP; Caron L; Arnold AA; Marcotte I; Warschawski DE
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(2):183819. PubMed ID: 34800428
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantification of branched chain fatty acids in polar and neutral lipids of cheese and fish samples.
    Hauff S; Vetter W
    J Agric Food Chem; 2010 Jan; 58(2):707-12. PubMed ID: 20043637
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum.
    Pond JL; Langworthy TA
    J Bacteriol; 1987 Mar; 169(3):1328-30. PubMed ID: 3818547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of fatty acid unsaturation and physical properties of microsomal membrane phospholipids on UDP-glucuronyltransferase activity.
    Castuma CE; Brenner RR
    Biochem J; 1989 Mar; 258(3):723-31. PubMed ID: 2499306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.
    Yu WB; Ye BC
    J Basic Microbiol; 2016 May; 56(5):502-9. PubMed ID: 26467177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of fatty acid metabolism in bacteria.
    Fujita Y; Matsuoka H; Hirooka K
    Mol Microbiol; 2007 Nov; 66(4):829-39. PubMed ID: 17919287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Incorporation of branched-chain C6-fatty acid isomers into the related long-chain fatty acids by growing cells of Bacillus subtilis.
    Kaneda T
    Biochemistry; 1971 Jan; 10(2):340-7. PubMed ID: 4992629
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.