These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 1014020)
41. Studies on the status of disulfide linkages and tyrosine residues in cardiotoxin. Keung WM; Leung WW; Kong YC Biochem Biophys Res Commun; 1975 Sep; 66(1):383-92. PubMed ID: 240362 [No Abstract] [Full Text] [Related]
42. Studies on the method of determining the effect of antimyonecrotic factor antibody in Habu-antivenin [proceedings]. Chinzei H Jpn J Med Sci Biol; 1978 Apr; 31(2):204-5. PubMed ID: 682381 [No Abstract] [Full Text] [Related]
43. Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. Gutiérrez JM; Lomonte B; León G; Alape-Girón A; Flores-Díaz M; Sanz L; Angulo Y; Calvete JJ J Proteomics; 2009 Mar; 72(2):165-82. PubMed ID: 19344652 [TBL] [Abstract][Full Text] [Related]
44. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Laustsen AH; Gutiérrez JM; Lohse B; Rasmussen AR; Fernández J; Milbo C; Lomonte B Toxicon; 2015 Jun; 99():23-35. PubMed ID: 25771242 [TBL] [Abstract][Full Text] [Related]
46. Functional Application of Snake Venom Proteomics in In Vivo Antivenom Assessment. Tan CH; Tan KY Methods Mol Biol; 2019; 1871():153-158. PubMed ID: 30276739 [TBL] [Abstract][Full Text] [Related]
48. The primary structure of a major polypeptide component from the venom of Naja melanoleuca. Shipolini RA; Kissonerghis M; Banks BE Eur J Biochem; 1975 Aug; 56(2):449-54. PubMed ID: 1175634 [TBL] [Abstract][Full Text] [Related]
49. Detection of venom-antivenom (VAV) immunocomplexes in vitro as a measure of antivenom efficacy. O'Leary MA; Isbister GK Toxicon; 2014 Jan; 77():125-32. PubMed ID: 24252422 [TBL] [Abstract][Full Text] [Related]
50. Comparison of proteomic profiles of the venoms of two of the 'Big Four' snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins. Choudhury M; McCleary RJR; Kesherwani M; Kini RM; Velmurugan D Toxicon; 2017 Sep; 135():33-42. PubMed ID: 28602829 [TBL] [Abstract][Full Text] [Related]
51. Comparative studies on cytotoxin from the Indian cobra venom and cardiotoxin from the Formosan cobra venom, with special reference to the effect on the growth of Ehrlich ascites tumor cells in mice. Shiau Lin SY; Su SC; Lee CY Taiwan Yi Xue Hui Za Zhi; 1976 Jun; 75(6):328-36. PubMed ID: 1068210 [No Abstract] [Full Text] [Related]
52. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody. Gao JF; Wang J; Qu YF; Ma XM; Ji X J Immunol Methods; 2013 Jan; 387(1-2):211-8. PubMed ID: 23142457 [TBL] [Abstract][Full Text] [Related]
53. The complex toxic components of the Russell's viper venom. Bolar HV; Master RW Biochem Biophys Res Commun; 1976 May; 70(2):573-7. PubMed ID: 938513 [No Abstract] [Full Text] [Related]
57. Immunome and venome of Bothrops jararacussu: a proteomic approach to study the molecular immunology of snake toxins. Correa-Netto C; Teixeira-Araujo R; Aguiar AS; Melgarejo AR; De-Simone SG; Soares MR; Foguel D; Zingali RB Toxicon; 2010 Jun; 55(7):1222-35. PubMed ID: 20060013 [TBL] [Abstract][Full Text] [Related]
58. Hypersensitivity to airborne spitting cobra snake venom. Prescott RA; Potter PC Ann Allergy Asthma Immunol; 2005 May; 94(5):600-3. PubMed ID: 15945564 [TBL] [Abstract][Full Text] [Related]
59. Toxoiding of snake venom and evaluation of immunogenicity of the toxoids. Khan ZH; Lari FA; Ali Z J Pak Med Assoc; 1980 Jan; 30(1):9-13. PubMed ID: 6767057 [No Abstract] [Full Text] [Related]