These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 10146739)
21. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Sample PA; Bosworth CF; Blumenthal EZ; Girkin C; Weinreb RN Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1783-90. PubMed ID: 10845599 [TBL] [Abstract][Full Text] [Related]
22. Use of a confocal laser scanning ophthalmoscope to detect glaucomatous cupping of the optic disc. Cucevic V; Brooks AM; Strang NT; Klein AG; Nugent KA Aust N Z J Ophthalmol; 1997 Aug; 25(3):217-20. PubMed ID: 9296296 [TBL] [Abstract][Full Text] [Related]
23. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities. Hwang YH; Kim YY; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of Frequency-Doubling Technology Perimetry as a Means of Screening for Glaucoma and Other Eye Diseases Using the National Health and Nutrition Examination Survey. Boland MV; Gupta P; Ko F; Zhao D; Guallar E; Friedman DS JAMA Ophthalmol; 2016 Jan; 134(1):57-62. PubMed ID: 26562502 [TBL] [Abstract][Full Text] [Related]
25. [The usefulness of frequency doubling technology perimetry in glaucoma screening in health-check program]. Kusaba K; Kawanami M; Ban Y Nippon Ganka Gakkai Zasshi; 2004 Sep; 108(9):554-9. PubMed ID: 15506489 [TBL] [Abstract][Full Text] [Related]
26. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Mardin CY; Horn FK; Jonas JB; Budde WM Br J Ophthalmol; 1999 Mar; 83(3):299-304. PubMed ID: 10365037 [TBL] [Abstract][Full Text] [Related]
27. Comparing optic nerve head analysis between confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Roberti G; Centofanti M; Oddone F; Tanga L; Michelessi M; Manni G Curr Eye Res; 2014 Oct; 39(10):1026-32. PubMed ID: 24655001 [TBL] [Abstract][Full Text] [Related]
28. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Bowd C; Zangwill LM; Berry CC; Blumenthal EZ; Vasile C; Sanchez-Galeana C; Bosworth CF; Sample PA; Weinreb RN Invest Ophthalmol Vis Sci; 2001 Aug; 42(9):1993-2003. PubMed ID: 11481263 [TBL] [Abstract][Full Text] [Related]
29. [Are there genuine and pseudo-normal pressure glaucomas? Body position-dependent intraocular pressure values in normal pressure glaucoma]. Mardin CY; Jonas J; Michelson G; Jünemann A Klin Monbl Augenheilkd; 1997 Oct; 211(4):235-40. PubMed ID: 9445910 [TBL] [Abstract][Full Text] [Related]
30. Glaucoma screening in primary care: the role of noncontact tonometry. Ralston ME; Choplin NT; Hollenbach KA; Applegate BJ; Henn TW J Fam Pract; 1992 Jan; 34(1):73-7. PubMed ID: 1728657 [TBL] [Abstract][Full Text] [Related]
31. Sector-based analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study. Oddone F; Centofanti M; Iester M; Rossetti L; Fogagnolo P; Michelessi M; Capris E; Manni G Ophthalmology; 2009 Jun; 116(6):1106-11.e1-3. PubMed ID: 19376590 [TBL] [Abstract][Full Text] [Related]
32. Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes. Quigley H; Arora K; Idrees S; Solano F; Bedrood S; Lee C; Jefferys J; Nguyen TD Invest Ophthalmol Vis Sci; 2017 May; 58(5):2566-2577. PubMed ID: 28494490 [TBL] [Abstract][Full Text] [Related]
33. Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study. Yu M; Lin C; Weinreb RN; Lai G; Chiu V; Leung CK Ophthalmology; 2016 Jun; 123(6):1201-10. PubMed ID: 27001534 [TBL] [Abstract][Full Text] [Related]
34. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Machida S; Gotoh Y; Toba Y; Ohtaki A; Kaneko M; Kurosaka D Invest Ophthalmol Vis Sci; 2008 May; 49(5):2201-7. PubMed ID: 18436853 [TBL] [Abstract][Full Text] [Related]
35. Interobserver and intraobserver variability in the detection of glaucomatous progression of the optic disc. Coleman AL; Sommer A; Enger C; Knopf HL; Stamper RL; Minckler DS J Glaucoma; 1996 Dec; 5(6):384-9. PubMed ID: 8946294 [TBL] [Abstract][Full Text] [Related]
36. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia. Lee JE; Sung KR; Park JM; Yoon JY; Kang SY; Park SB; Koo HJ Graefes Arch Clin Exp Ophthalmol; 2017 Mar; 255(3):591-598. PubMed ID: 27837279 [TBL] [Abstract][Full Text] [Related]
37. Topographical Analysis of Non-Glaucomatous Myopic Optic Discs Using a Confocal Scanning Laser Ophthalmoscope (TopSS). Oh SH; Chung SK; Lee NY Semin Ophthalmol; 2015; 30(5-6):397-409. PubMed ID: 24809741 [TBL] [Abstract][Full Text] [Related]
38. Accuracy of combined GDx-VCC and matrix FDT in a glaucoma screening trial. Tóth M; Kóthy P; Vargha P; Holló G J Glaucoma; 2007 Aug; 16(5):462-70. PubMed ID: 17700289 [TBL] [Abstract][Full Text] [Related]
39. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. Takayama K; Ooto S; Hangai M; Ueda-Arakawa N; Yoshida S; Akagi T; Ikeda HO; Nonaka A; Hanebuchi M; Inoue T; Yoshimura N Am J Ophthalmol; 2013 May; 155(5):870-81. PubMed ID: 23352341 [TBL] [Abstract][Full Text] [Related]
40. Optic disc imaging in perimetrically normal eyes of glaucoma patients with unilateral field loss. Caprioli J; Nouri-Mahdavi K; Law SK; Badalà F Trans Am Ophthalmol Soc; 2006; 104():202-11. PubMed ID: 17471341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]