These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 10147369)

  • 21. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use.
    Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P
    Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can the oxygenator screen filter reduce gaseous microemboli?
    Johagen D; Appelblad M; Svenmarker S
    J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.
    Qiu F; Peng S; Kunselman A; Ündar A
    Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.
    Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P
    Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass.
    Wang S; Woitas K; Clark JB; Myers JL; Undar A
    Artif Organs; 2009 Nov; 33(11):1026-30. PubMed ID: 20021476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The bubble oxygenator as a source of gaseous microemboli.
    Yost G
    Med Instrum; 1985; 19(2):67-9. PubMed ID: 4000009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of four pediatric cardiopulmonary bypass circuits in terms of perfusion quality and capturing gaseous microemboli.
    Mathis RK; Lin J; Dogal NM; Qiu F; Kunselman A; Wang S; Ündar A
    Perfusion; 2012 Nov; 27(6):470-9. PubMed ID: 22751383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators.
    Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB
    Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass?
    Jones TJ; Deal DD; Vernon JC; Blackburn N; Stump DA
    Ann Thorac Surg; 2002 Dec; 74(6):2132-7. PubMed ID: 12643407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model.
    Undar A; Ji B; Kunselman AR; Myers JL
    ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study.
    Hudacko A; Sievert A; Sistino J
    J Extra Corpor Technol; 2009 Sep; 41(3):166-71. PubMed ID: 19806800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assisted venous drainage, venous air, and gaseous microemboli transmission into the arterial line: an in-vitro study.
    Rider SP; Simon LV; Rice BJ; Poulton CC
    J Extra Corpor Technol; 1998 Dec; 30(4):160-5. PubMed ID: 10537575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC.
    Stanzel RD; Henderson M
    Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Independent control of blood gas PO2 and PCO2 in a bubble oxygenator.
    Sutherland KM; Pearson DT; Gordon LS
    Clin Phys Physiol Meas; 1988 May; 9(2):97-105. PubMed ID: 3134153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli.
    Nollert G; Nagashima M; Bucerius J; Shin'oka T; Jonas RA
    J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1166-71. PubMed ID: 10343268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microemboli generation, detection and characterization during CPB procedures in neonates, infants, and small children.
    Win KN; Wang S; Undar A
    ASAIO J; 2008; 54(5):486-90. PubMed ID: 18812739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gaseous microemboli: sources, causes, and clinical considerations.
    Kurusz M
    Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pumping O2 with no N2: An Overview of Hollow Fiber Membrane Oxygenators with Integrated Arterial Filters.
    Liu A; Sun Z; Liu Q; Zhu N; Wang S
    Curr Top Med Chem; 2020; 20(1):78-85. PubMed ID: 31820691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.