These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10147810)

  • 1. A performance analysis of an extracorporeal shock wave lithotripter: spatial pressure distribution and the effects of lithotripter voltage, electrode life, and tissue attenuation.
    Monaghan P; Gilbert JL; Prystowsky JB
    J Stone Dis; 1992 Oct; 4(4):289-300. PubMed ID: 10147810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopaedics. II. Dose-response and pressure distribution measurements.
    Park JB; Park SH; Weinstein JN; Loening S; Oster D
    J Appl Biomater; 1991; 2(3):161-70. PubMed ID: 10149081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of electrode shape on the performance of electrohydraulic lithotripters.
    Loske AM; Prieto FE
    J Stone Dis; 1993 Oct; 5(4):228-39. PubMed ID: 10146427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock wave sensors: I. Requirements and design.
    Lewin PA; Schafer ME
    J Lithotr Stone Dis; 1991 Jan; 3(1):3-17. PubMed ID: 10149140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The Dornier lithotripter in a comparison. Measuring shockwave fields and fragmentation effects].
    Müller M
    Biomed Tech (Berl); 1990 Nov; 35(11):250-62. PubMed ID: 2073536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Results of extracorporeal shock wave lithotripsy in young children.
    Mosaad A; El-Salamouni T
    J Lithotr Stone Dis; 1991 Apr; 3(2):157-61. PubMed ID: 10149156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1991; 17(3):245-55. PubMed ID: 1887510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What makes a shock wave efficient in lithotripsy?
    Granz B; Köhler G
    J Stone Dis; 1992 Apr; 4(2):123-8. PubMed ID: 10149177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size and location of defects at the coupling interface affect lithotripter performance.
    Li G; Williams JC; Pishchalnikov YA; Liu Z; McAteer JA
    BJU Int; 2012 Dec; 110(11 Pt C):E871-7. PubMed ID: 22938566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopedics. I. Foundations and overview.
    Park SH; Park JB; Weinstein JN; Loening S
    J Appl Biomater; 1991; 2(2):115-26. PubMed ID: 10149079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter.
    Coleman AJ; Saunders JE; Preston RC; Bacon DR
    Ultrasound Med Biol; 1987 Oct; 13(10):651-7. PubMed ID: 3686729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biliary lithotripsy can be enhanced with proper ultrasound probe position.
    Affronti J; Flournoy T; Akers S; Baillie J
    J Stone Dis; 1992 Apr; 4(2):141-4. PubMed ID: 10149179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.
    Qin J; Simmons WN; Sankin G; Zhong P
    J Acoust Soc Am; 2010 Apr; 127(4):2635-45. PubMed ID: 20370044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new transportable shock-wave lithotripsy machine for managing urinary stones: a single-centre experience with a dual-focus lithotripter.
    De Sio M; Autorino R; Quarto G; Mordente S; Giugliano F; Di Giacomo F; Neri F; Quattrone C; Sorrentino D; De Domenico R; D'Armiento M
    BJU Int; 2007 Nov; 100(5):1137-41. PubMed ID: 17550410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.