These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 10148337)
41. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application. Ren Y; Zhao H; Liu W; Yang K Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():293-297. PubMed ID: 26706533 [TBL] [Abstract][Full Text] [Related]
42. The Effect of Sensitization on the Susceptibility of AISI 316L Biomaterial to Pitting Corrosion. Zatkalíková V; Uhríčik M; Markovičová L; Pastierovičová L; Kuchariková L Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630005 [TBL] [Abstract][Full Text] [Related]
43. Duplex stainless steels for osteosynthesis devices. Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of Time-Dependent Corrosion Inhibition Rate for f-MWCNT-BCP Composite Coatings on 316L Stainless Steel in Simulated Body Fluid for Orthopedic Implantation. Logesh M; Lavanya K; Mabrouk KE; Soundhararajan R; Srinivasan H; Ballamurugan AM Appl Biochem Biotechnol; 2024 Mar; 196(3):1544-1557. PubMed ID: 37432637 [TBL] [Abstract][Full Text] [Related]
45. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel. Stio M; Martinesi M; Treves C; Borgioli F Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1081-91. PubMed ID: 27612806 [TBL] [Abstract][Full Text] [Related]
46. Characterization of a nitrogen-rich austenitic stainless steel used for osteosynthesis devices. Ornhagen C; Nilsson JO; Vannevik H J Biomed Mater Res; 1996 May; 31(1):97-103. PubMed ID: 8731154 [TBL] [Abstract][Full Text] [Related]
47. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants. Salahinejad E; Hadianfard MJ; Macdonald DD; Sharifi-Asl S; Mozafari M; Walker KJ; Rad AT; Madihally SV; Tayebi L PLoS One; 2013; 8(4):e61633. PubMed ID: 23630603 [TBL] [Abstract][Full Text] [Related]
48. Comparative study on corrosion behaviour of Nitinol and stainless steel orthodontic wires in simulated saliva solution in presence of fluoride ions. Mirjalili M; Momeni M; Ebrahimi N; Moayed MH Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2084-93. PubMed ID: 23498236 [TBL] [Abstract][Full Text] [Related]
49. Analysis of in vivo corrosion of 316L stainless steel posterior thoracolumbar plate systems: a retrieval study. Majid K; Crowder T; Baker E; Baker K; Koueiter D; Shields E; Herkowitz HN J Spinal Disord Tech; 2011 Dec; 24(8):500-5. PubMed ID: 21336173 [TBL] [Abstract][Full Text] [Related]
50. Influence of Ethanol on Pitting Corrosion Behavior of Stainless Steel for Bioethanol Fermentation Tanks. Wan Y; Sun Y; Cai D; Yin L; Dai N; Lei L; Jiang Y; Li J Front Chem; 2020; 8():529. PubMed ID: 32671020 [TBL] [Abstract][Full Text] [Related]
51. Corrosion behavior of high nitrogen nickel-free austenitic stainless steel in the presence of artificial saliva and Streptococcus mutans. Yang C; Wang Q; Ren Y; Jin D; Liu D; Moradi M; Chen X; Li H; Xu D; Wang F Bioelectrochemistry; 2021 Dec; 142():107940. PubMed ID: 34492448 [TBL] [Abstract][Full Text] [Related]
52. The influence of static stress on the corrosion behavior of 316L stainless steel in Ringer's solution. Bundy KJ; Vogelbaum MA; Desai VH J Biomed Mater Res; 1986 Apr; 20(4):493-505. PubMed ID: 3700443 [TBL] [Abstract][Full Text] [Related]
53. Preparation and characterization of sol-gel hydroxyapatite and its electrochemical evaluation for biomedical applications. Vijayalakshmi U; Prabakaran K; Rajeswari S J Biomed Mater Res A; 2008 Dec; 87(3):739-49. PubMed ID: 18200538 [TBL] [Abstract][Full Text] [Related]
54. Influence of cold plastic deformation on critical pitting potential of AISI 316 L and 304 L steels in an artificial physiological solution simulating the aggressiveness of the human body. Cigada A; Mazza B; Pedeferri P; Sinigaglia D J Biomed Mater Res; 1977 Jul; 11(4):503-12. PubMed ID: 873942 [TBL] [Abstract][Full Text] [Related]
55. A new stainless steel alloy for surgical implants compared to 316 S12. Smethurst E Biomaterials; 1981 Apr; 2(2):116-9. PubMed ID: 7248423 [TBL] [Abstract][Full Text] [Related]
56. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid. Talha M; Behera CK; Sinha OP Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():455-66. PubMed ID: 24857514 [TBL] [Abstract][Full Text] [Related]
57. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures. Lee JS; Ray RI; Lowe KL; Jones-Meehan J; Little BJ Biofouling; 2003 Apr; 19 Suppl():151-60. PubMed ID: 14618716 [TBL] [Abstract][Full Text] [Related]
58. In vitro corrosion fatigue of 316L cold worked stainless steel. Taira M; Lautenschlager EP J Biomed Mater Res; 1992 Sep; 26(9):1131-9. PubMed ID: 1429762 [TBL] [Abstract][Full Text] [Related]
59. Long-term stability of self-assembled monolayers on 316L stainless steel. Kaufmann CR; Mani G; Marton D; Johnson DM; Agrawal CM Biomed Mater; 2010 Apr; 5(2):25008. PubMed ID: 20339168 [TBL] [Abstract][Full Text] [Related]
60. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Kim H; Johnson JW Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]