These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10149054)

  • 21. Three-dimensional computer-aided design-based geometric modeling of a new trileaflet aortic valve.
    Praveen Kumar G; Mathew L
    Artif Organs; 2010 Dec; 34(12):1121-4. PubMed ID: 20545658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kangaroo versus freestyle stentless bioprostheses in a juvenile sheep model: hemodynamic performance and calcification behavior.
    Neethling WM; Hodge AJ; Glancy R
    J Card Surg; 2005; 20(1):29-34. PubMed ID: 15673407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forces at single point attached commissures (SPAC) in pericardial aortic valve prosthesis.
    Goetz WA; Lim KH; Ibled R; Grousson N; Salgues Sle H; Yeo JH
    Eur J Cardiothorac Surg; 2006 Feb; 29(2):150-5. PubMed ID: 16386912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovative developments of the heart valves designed for use in ventricular assist devices.
    Goubergrits L; Affeld K; Kertzscher U
    Expert Rev Med Devices; 2005 Jan; 2(1):61-71. PubMed ID: 16293030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A non-invasive technique to quantify in vitro bioprosthetic valvular coaptation.
    Gross JM; Christie GW
    ASAIO J; 1993; 39(3):M392-7. PubMed ID: 8268565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-vivo experience with the Triflo trileaflet mechanical heart valve.
    Gallegos RP; Rivard AL; Suwan PT; Black S; Bertog S; Steinseifer U; Armien A; Lahti M; Bianco RW
    J Heart Valve Dis; 2006 Nov; 15(6):791-9. PubMed ID: 17152787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve.
    Yin W; Gallocher S; Pinchuk L; Schoephoerster RT; Jesty J; Bluestein D
    Artif Organs; 2005 Oct; 29(10):826-31. PubMed ID: 16185345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mid-term results of freestyle aortic stentless bioprosthetic valve: clinical impact of quantitative analysis of in-vivo three-dimensional flow velocity profile by magnetic resonance imaging.
    Matsue H; Sawa Y; Matsumiya G; Matsuda H; Hamada S
    J Heart Valve Dis; 2005 Sep; 14(5):630-6. PubMed ID: 16245502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational fluid dynamics study of a protruded-hinge bileaflet mechanical heart valve.
    Wang J; Yao H; Lim CJ; Zhao Y; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2001 Mar; 10(2):254-262; discussion 263. PubMed ID: 11297213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
    Hayashida K; Kanda K; Yaku H; Ando J; Nakayama Y
    J Thorac Cardiovasc Surg; 2007 Jul; 134(1):152-9. PubMed ID: 17599501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related changes in the aortic valve affect leaflet stress distributions: implications for aortic valve degeneration.
    Singh R; Strom JA; Ondrovic L; Joseph B; VanAuker MD
    J Heart Valve Dis; 2008 May; 17(3):290-8; discussion 299. PubMed ID: 18592926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position.
    Daebritz SH; Fausten B; Hermanns B; Schroeder J; Groetzner J; Autschbach R; Messmer BJ; Sachweh JS
    Eur J Cardiothorac Surg; 2004 Jun; 25(6):946-52. PubMed ID: 15144993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Video-based measuring of quality parameters for tricuspid xenograft heart valve implants.
    Condurache AP; Hahn T; Scharfschwerdt M; Mertins A; Aach T
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2868-78. PubMed ID: 19272952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and numerical simulation for the development of an expandable paediatric heart valve.
    Kerr MM; Gourlay T
    Int J Artif Organs; 2021 Jul; 44(7):518-524. PubMed ID: 33300423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Research on the modeling of biological valves poppet].
    Yuan Q; Zhou Y; Cong H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1197-9. PubMed ID: 16422098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of graft size and resuspension level of the commissures on aortic insufficiency after reimplantation of the aortic valve.
    Babin-Ebell J; De Vivo F; Vogt PR; Roth P
    Thorac Cardiovasc Surg; 2007 Sep; 55(6):351-4. PubMed ID: 17721842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer-assisted methods for design optimization of cardiac bioprosthetic valves.
    Hamid MS; Sabbah HN; Stein PD
    Henry Ford Hosp Med J; 1984; 32(3):178-81. PubMed ID: 6526660
    [No Abstract]   [Full Text] [Related]  

  • 39. Cardiac valve replacement: a bioengineering approach.
    Korossis SA; Fisher J; Ingham E
    Biomed Mater Eng; 2000; 10(2):83-124. PubMed ID: 11086842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fundamental mechanics of aortic heart valve closure.
    Hose DR; Narracott AJ; Penrose JM; Baguley D; Jones IP; Lawford PV
    J Biomech; 2006; 39(5):958-67. PubMed ID: 16488234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.