These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10149137)

  • 1. Biocompatibility of poly (DL-lactic acid/glycine) copolymers.
    Schakenraad JM; Dijkstra PJ
    Clin Mater; 1991; 7(3):253-69. PubMed ID: 10149137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro degradation of glycine/DL-lactic acid copolymers.
    Helder J; Dijkstra PJ; Feijen J
    J Biomed Mater Res; 1990 Aug; 24(8):1005-20. PubMed ID: 2394759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo and in vitro degradation of glycine/DL-lactic acid copolymers.
    Schakenraad JM; Nieuwenhuis P; Molenaar I; Helder J; Dijkstra PJ; Feijen J
    J Biomed Mater Res; 1989 Nov; 23(11):1271-88. PubMed ID: 2606921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models.
    Zange R; Li Y; Kissel T
    J Control Release; 1998 Dec; 56(1-3):249-58. PubMed ID: 9801448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks.
    Ronneberger B; Kao WJ; Anderson JM; Kissel T
    J Biomed Mater Res; 1996 Jan; 30(1):31-40. PubMed ID: 8788103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.
    Li J; Nemes P; Guo J
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1129-1137. PubMed ID: 28514061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polymers. II. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(9):601-11. PubMed ID: 1391407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer.
    Satturwar PM; Fulzele SV; Dorle AK
    AAPS PharmSciTech; 2003 Oct; 4(4):E55. PubMed ID: 15198550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo degradation studies of a novel linear copolymer of lactide and ethylphosphate.
    Chaubal MV; Su G; Spicer E; Dang W; Branham KE; English JP; Zhao Z
    J Biomater Sci Polym Ed; 2003; 14(1):45-61. PubMed ID: 12635770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(hydroxy acids) in drug delivery.
    Juni K; Nakano M
    Crit Rev Ther Drug Carrier Syst; 1987; 3(3):209-32. PubMed ID: 3549007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments.
    Ferruti P; Penco M; D'Addato P; Ranucci E; Deghenghi R
    Biomaterials; 1995 Dec; 16(18):1423-8. PubMed ID: 8590770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
    Wang N; Wu XS; Li C; Feng MF
    J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol).
    von Burkersroda F; Gref R; Göpferich A
    Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.