These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10149140)

  • 1. Shock wave sensors: I. Requirements and design.
    Lewin PA; Schafer ME
    J Lithotr Stone Dis; 1991 Jan; 3(1):3-17. PubMed ID: 10149140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-effective shock wave hydrophones.
    Schafer ME
    J Stone Dis; 1993 Apr; 5(2):73-6. PubMed ID: 10148592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of electrode shape on the performance of electrohydraulic lithotripters.
    Loske AM; Prieto FE
    J Stone Dis; 1993 Oct; 5(4):228-39. PubMed ID: 10146427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What makes a shock wave efficient in lithotripsy?
    Granz B; Köhler G
    J Stone Dis; 1992 Apr; 4(2):123-8. PubMed ID: 10149177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A performance analysis of an extracorporeal shock wave lithotripter: spatial pressure distribution and the effects of lithotripter voltage, electrode life, and tissue attenuation.
    Monaghan P; Gilbert JL; Prystowsky JB
    J Stone Dis; 1992 Oct; 4(4):289-300. PubMed ID: 10147810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The Dornier lithotripter in a comparison. Measuring shockwave fields and fragmentation effects].
    Müller M
    Biomed Tech (Berl); 1990 Nov; 35(11):250-62. PubMed ID: 2073536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of mobile extracorporeal shock wave lithotripter: experience in a pediatric institution.
    Defoor W; Dharamsi N; Smith P; Sekhon D; Colombo J; Riden D; Reddy P; Sheldon C; Minevich E
    Urology; 2005 Apr; 65(4):778-81. PubMed ID: 15833527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [New trends in extracorporeal shockwave lithotripsy].
    Folberth W
    Aktuelle Radiol; 1992 Mar; 2(2):69-74. PubMed ID: 1571373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Results of extracorporeal shock wave lithotripsy in young children.
    Mosaad A; El-Salamouni T
    J Lithotr Stone Dis; 1991 Apr; 3(2):157-61. PubMed ID: 10149156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limitations of extracorporeal shock wave lithotripsy.
    Madaan S; Joyce AD
    Curr Opin Urol; 2007 Mar; 17(2):109-13. PubMed ID: 17285020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of modification of shock-wave delivery on stone fragmentation.
    Talic RF; Rabah DM
    Curr Opin Urol; 2006 Mar; 16(2):83-7. PubMed ID: 16479209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameters influencing piezoelectric shock wave lithotripsy of biliary calculi.
    Schneider HT; May A; Fromm M; Theobaldy S; Hahn EG; Ell C
    J Stone Dis; 1993 Jan; 5(1):24-31. PubMed ID: 10148258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-center North American experience with wolf Piezolith 3000 in management of urinary calculi.
    Wang R; Faerber GJ; Roberts WW; Morris DS; Wolf JS
    Urology; 2009 May; 73(5):958-63. PubMed ID: 19278719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new transportable shock-wave lithotripsy machine for managing urinary stones: a single-centre experience with a dual-focus lithotripter.
    De Sio M; Autorino R; Quarto G; Mordente S; Giugliano F; Di Giacomo F; Neri F; Quattrone C; Sorrentino D; De Domenico R; D'Armiento M
    BJU Int; 2007 Nov; 100(5):1137-41. PubMed ID: 17550410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy.
    Kanao K; Nakashima J; Nakagawa K; Asakura H; Miyajima A; Oya M; Ohigashi T; Murai M
    J Urol; 2006 Oct; 176(4 Pt 1):1453-6; discussion 1456-7. PubMed ID: 16952658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopaedics. II. Dose-response and pressure distribution measurements.
    Park JB; Park SH; Weinstein JN; Loening S; Oster D
    J Appl Biomater; 1991; 2(3):161-70. PubMed ID: 10149081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biliary lithotripsy with the Siemens Lithostar Plus overhead module.
    Rawat B; Fache JS; Burhenne HJ
    J Lithotr Stone Dis; 1990 Apr; 2(2):111-6. PubMed ID: 10148929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.