These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10149172)

  • 1. Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources.
    Folberth W; Köhler G; Rohwedder A; Matura E
    J Stone Dis; 1992 Jan; 4(1):1-7. PubMed ID: 10149172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiences with lithotripters: measurements of standardized fragmentation.
    Sass W; Steffen K; Matura E; Folberth W; Dreyer H; Seifert J
    J Stone Dis; 1992 Apr; 4(2):129-40. PubMed ID: 10149178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What makes a shock wave efficient in lithotripsy?
    Granz B; Köhler G
    J Stone Dis; 1992 Apr; 4(2):123-8. PubMed ID: 10149177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Focal size and shock wave pressure: a comparison of three different physical shock wave generators].
    Janowitz P; Stuber M; Meier T; Steiner R; Schneider HT; Ell C; Neuhaus H; Ott R; Swobodnik W; Kratzer W
    Dtsch Med Wochenschr; 1990 Dec; 115(51-52):1945-9. PubMed ID: 2261859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New trends in extracorporeal shockwave lithotripsy].
    Folberth W
    Aktuelle Radiol; 1992 Mar; 2(2):69-74. PubMed ID: 1571373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The principle of extracorporeal shock wave lithotriptor and its locating system].
    Yin J; Zhong ZL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(2):124-6, 123. PubMed ID: 16104177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of extended use of an electromagnetic lithotripter beyond the manufacturer's recommended maintenance schedule.
    Chen TY; Ponsot Y; Brouillette M; Tétrault JP; Tu le M
    Can J Urol; 2007 Jun; 14(3):3560-5. PubMed ID: 17594746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamentals for the development of a lithotripter of the new generation. A survey of the principle knowledge and skills contributing to the progress in lithotripter efficiency for a wide scale of application.
    Köhler G; Schätzle U; Granz B
    Eur Urol; 1991; 20(4):327-33. PubMed ID: 1814750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shock wave sensors: I. Requirements and design.
    Lewin PA; Schafer ME
    J Lithotr Stone Dis; 1991 Jan; 3(1):3-17. PubMed ID: 10149140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of electrode shape on the performance of electrohydraulic lithotripters.
    Loske AM; Prieto FE
    J Stone Dis; 1993 Oct; 5(4):228-39. PubMed ID: 10146427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock wave physics.
    Preminger GM
    Am J Kidney Dis; 1991 Apr; 17(4):431-5. PubMed ID: 2008912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.
    Weinberg K; Ortiz M
    Biomech Model Mechanobiol; 2009 Aug; 8(4):285-99. PubMed ID: 18807077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gallstone lithotripsy: relevant physical principles and technical issues.
    Davros WJ; Garra BS; Zeman RK
    Radiology; 1991 Feb; 178(2):397-408. PubMed ID: 1987600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Physical-technical principles of extracorporeal shockwave therapy (ESWT)].
    Gerdesmeyer L; Maier M; Haake M; Schmitz C
    Orthopade; 2002 Jul; 31(7):610-7. PubMed ID: 12219657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The performance of different pressure pulse generators for extracorporeal lithotripsy: a comparison based on commercial lithotripters for kidney stones.
    Buizza A; Dell'Aquila T; Giribona P; Spagno C
    Ultrasound Med Biol; 1995; 21(2):259-72. PubMed ID: 7571134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differing modes of shock-wave generation.
    Zhong P; Preminger GM
    Semin Urol; 1994 Feb; 12(1):2-14. PubMed ID: 8197333
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of stone damage caused by different modes of shock wave generation.
    Chuong CJ; Zhong P; Preminger GM
    J Urol; 1992 Jul; 148(1):200-5. PubMed ID: 1613869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters.
    Coleman AJ; Saunders JE
    Ultrasound Med Biol; 1989; 15(3):213-27. PubMed ID: 2741250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.