These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10149977)

  • 1. Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties.
    Törmälä P
    Clin Mater; 1992; 10(1-2):29-34. PubMed ID: 10149977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-high strength, self-reinforced absorbable polymeric composites for applications in different disciplines of surgery.
    Törmälä P
    Clin Mater; 1993; 13(1-4):35-40. PubMed ID: 10146241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable implants in orthopaedic surgery--a review on the state-of-the-art.
    Hofmann GO
    Clin Mater; 1992; 10(1-2):75-80. PubMed ID: 10171206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone.
    Daniels AU; Chang MK; Andriano KP
    J Appl Biomater; 1990; 1(1):57-78. PubMed ID: 10148987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study.
    Törmälä P; Vasenius J; Vainionpää S; Laiho J; Pohjonen T; Rokkanen P
    J Biomed Mater Res; 1991 Jan; 25(1):1-22. PubMed ID: 1850429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of biodegradable implants.
    Claes LE
    Clin Mater; 1992; 10(1-2):41-6. PubMed ID: 10171202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories.
    Jaiswal S; Kumar RM; Gupta P; Kumaraswamy M; Roy P; Lahiri D
    J Mech Behav Biomed Mater; 2018 Feb; 78():442-454. PubMed ID: 29232643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self-reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Niiranen H; Törmälä P; Rokkanen P
    J Biomater Sci Polym Ed; 2005; 16(6):725-44. PubMed ID: 16028593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary biocompatibility screening of several biodegradable phosphate fiber reinforced polymers.
    Andriano KP; Daniels AU; Smutz WP; Wyatt RW
    J Appl Biomater; 1993; 4(1):1-12. PubMed ID: 10148351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resorbable polymers for internal fixation.
    Gogolewski S
    Clin Mater; 1992; 10(1-2):13-20. PubMed ID: 10149975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress of biodegradable internal fixation materials].
    Su B; Jiang D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1388-92. PubMed ID: 19968186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-reinforcing biodegradable implant made of poly(ɛ-caprolactone)/calcium phosphate ceramic composite for craniomaxillofacial fracture fixation.
    Wu CC; Tsai YF; Hsu LH; Chen JP; Sumi S; Yang KC
    J Craniomaxillofac Surg; 2016 Sep; 44(9):1333-41. PubMed ID: 27527677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures.
    Furukawa T; Matsusue Y; Yasunaga T; Shikinami Y; Okuno M; Nakamura T
    Biomaterials; 2000 May; 21(9):889-98. PubMed ID: 10735465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis.
    Cifuentes SC; Frutos E; Benavente R; Lorenzo V; González-Carrasco JL
    J Mech Behav Biomed Mater; 2017 Jan; 65():781-790. PubMed ID: 27776320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture.
    Hu Q; Li B; Wang M; Shen J
    Biomaterials; 2004 Feb; 25(5):779-85. PubMed ID: 14609666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of bacterial contaminations on the biodegradation of PLA implants.
    Hofmann GO; Liedtke H; Ruckdeschel G; Lob G
    Clin Mater; 1990; 6(2):137-50. PubMed ID: 10147517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of biodegradable lactides and glycolides in podiatry.
    Athanasiou KA; Niederauer GG; Agrawal CM; Landsman AS
    Clin Podiatr Med Surg; 1995 Jul; 12(3):475-95. PubMed ID: 7553536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices.
    Andriano KP; Daniels AU; Heller J
    J Appl Biomater; 1992; 3(3):197-206. PubMed ID: 10147716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of natural fibres reinforced composites for the production of orthopaedic cast.
    Igba IO; Nwigbo SC
    J Med Eng Technol; 2020 Nov; 44(8):498-507. PubMed ID: 33170073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable implants as intramedullary nails. A survey of recent studies and an introduction to their use.
    Räihä JE
    Clin Mater; 1992; 10(1-2):35-9. PubMed ID: 10149976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.