BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10150600)

  • 1. Evaluation of experimental and finite element models of synthetic and cadaveric femora for pre-clinical design-analysis.
    McNamara BP; Cristofolini L; Toni A; Taylor D
    Clin Mater; 1994; 17(3):131-40. PubMed ID: 10150600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels.
    Lopes VMM; Neto MA; Amaro AM; Roseiro LM; Paulino MF
    Med Eng Phys; 2017 Aug; 46():96-109. PubMed ID: 28645848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs.
    Zdero R; Bougherara H; Dubov A; Shah S; Zalzal P; Mahfud A; Schemitsch EH
    Proc Inst Mech Eng H; 2010; 224(7):831-40. PubMed ID: 20839651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of beam theory for estimating bone tissue modulus and yield stress from 3-point bending tests on rat femora.
    Arias-Moreno AJ; Ito K; van Rietbergen B
    J Biomech; 2020 Mar; 101():109654. PubMed ID: 32007225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus.
    van Lenthe GH; Voide R; Boyd SK; Müller R
    Bone; 2008 Oct; 43(4):717-23. PubMed ID: 18639658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
    Gardner MP; Chong AC; Pollock AG; Wooley PH
    Ann Biomed Eng; 2010 Mar; 38(3):613-20. PubMed ID: 20049637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
    MacLeod AR; Rose H; Gill HS
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27618586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of orthotropic bone elastic constants using FEA and modal analysis.
    Taylor WR; Roland E; Ploeg H; Hertig D; Klabunde R; Warner MD; Hobatho MC; Rakotomanana L; Clift SE
    J Biomech; 2002 Jun; 35(6):767-73. PubMed ID: 12020996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated finite element analysis of excised human femora based on precision -QCT.
    Merz B; Niederer P; Müller R; Rüegsegger P
    J Biomech Eng; 1996 Aug; 118(3):387-90. PubMed ID: 8872261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models.
    Park G; Kim T; Forman J; Panzer MB; Crandall JR
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1151-1166. PubMed ID: 28632407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical validation of whole bone composite femur models.
    Cristofolini L; Viceconti M; Cappello A; Toni A
    J Biomech; 1996 Apr; 29(4):525-35. PubMed ID: 8964782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur.
    Wirtz DC; Schiffers N; Pandorf T; Radermacher K; Weichert D; Forst R
    J Biomech; 2000 Oct; 33(10):1325-30. PubMed ID: 10899344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.